Capítulo 7

Determinação Numérica de Auto-Valores e Auto-Vetores

7.1 Introdução

Auto-valores e auto-vetores estão presentes em diferentes ramos da matemática incluindo formas quadráticas, sistemas diferenciais; problemas de otimização não linear, e podem ser usados para resolver problemas de diversos campos, como economia, teoria da informação, análise estrutural, eletrônica, teoria de controle e muitos outros.

Nosso objetivo nesse capítulo é apresentar métodos numéricos para a determinação dos auto-valores e correspondentes auto-vetores de uma matriz A de ordem n. Sugerimos ao leitor rever a seção sobre auto-valores e auto-vetores dada no Capítulo 1. A menos que a matriz seja de ordem baixa ou que tenha muitos elementos iguais a zero, a expansão direta do determinante para a determinação do polinômio característico, ver exemplo 1.22, é ineficiente. Assim os métodos numéricos que estudaremos são obtidos sem fazer uso do cálculo do determinante. Tais métodos podem ser divididos em três grupos:

- i) métodos que determinam o polinômio característico,
- ii) métodos que determinam alguns auto-valores,
- iii) métodos que determinam todos os auto-valores.

Nos dois últimos casos determinamos os auto-valores sem conhecer a expressão do polinômio característico.

Em relação aos métodos do grupo i), uma vez determinado o polinômio característico de A, para calcular os auto-valores devemos utilizar métodos numéricos para determinação de zeros de polinômio, (ver Capítulo 3). Nessa classe encontram-se, entre outros, os métodos de Leverrier e Leverrier-Faddeev.

Os métodos do grupo ii), chamados iterativos, são usados se não estamos interessados em todos os auto-valores de A. Incluem-se nessa classe os métodos das potências, potência inversa.

Em relação aos métodos do grupo iii), podemos dividí-los em duas classes:

- a) métodos numéricos para matrizes simétricas,
- b) métodos numéricos para matrizes não simétricas.

Na classe **a)**, inclui-se entre outros, o método de Jacobi, o qual reduz uma dada matriz simétrica numa forma especial, cujos auto-valores são facilmente determinados. Entre os métodos da classe **b)** podemos citar os métodos de Rutishauser (método LR) e o de Francis (método QR) os quais transformam a

matriz dada numa matriz triangular superior. Todos os métodos do grupo iii) fazem uso de uma série de transformações de similaridade e assim são algumas vezes referenciados como métodos de transformações ou métodos diretos.

Maiores detalhes sobre essas técnicas, bem como sobre a teoria desses métodos podem ser encontradas em [Wilkinson,1965].

Descreveremos e exemplificaremos cada um dos métodos numéricos mencionados acima, iniciando com aqueles que determinam o polinômio característico. Antes porém precisamos do seguinte resultado.

Teorema 7.1 - (Teorema de Newton) - Seja o polinômio:

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n ,$$

cujas raízes são: x_1, x_2, \ldots, x_n . Seja ainda:

$$s_k = \sum_{i=1}^n x_i^k \quad , \quad 1 \le k \le n ,$$

então:

$$\sum_{i=0}^{k-1} a_i s_{k-1} + k a_k = 0 , k = 1, 2, \dots, n.$$

Prova: A prova deste teorema pode ser encontrada em [Jennings,19..].

Através desse teorema vemos que existe uma relação entre os coeficientes de um polinômio e as somas das potências das suas raízes. Assim, conhecidas as somas das potências das raízes do polinômio podemos determinar os coeficientes do mesmo.

Exemplo 7.1 - Sejam $s_1 = 6$, $s_2 = 14$, $s_3 = 36$ as somas das potências das raízes de um polinômio P(x). Determinar P(x).

Solução: Pelo teorema 7.1, temos:

Tomando o coeficiente do termo de maior grau do polinômio igual a 1, isto é, fazendo $a_0 = 1$, obtemos por substituição nas expressões anteriores que:

$$a_1 = -6$$
, $a_2 = 11$, $a_3 = 6$.

Portanto, o polinômio procurado é:

$$P(x) = x^3 - 6x^2 + 11x - 6$$
.

Logo, o conhecimento dos $s_k, k = 1, ..., n$, proporciona a determinação dos $a_k, k = 1, 2, ..., n$. Observe que nesse exemplo as raízes do polinômio são: $x_1 = 1, x_2 = 2$ e $x_3 = 3$.

Para os métodos numéricos descritos a seguir usaremos a seguinte notação para o polinômio característico de uma matriz A, de ordem n:

$$P(\lambda) = (-1)^n \left[\lambda^n - p_1 \lambda^{n-1} - p_2 \lambda^{n-2} - \dots - p_{n-1} \lambda - p_n \right] . \tag{7.1}$$

7.2 Método de Leverrier

O Método de Leverrier fornece o polinômio característico de uma matriz A de ordem n.

Seja A uma matriz quadrada de ordem n. Se $\lambda_1, \lambda_2, \ldots, \lambda_n$ são os auto-valores da matriz A, isto é, se $\lambda_1, \lambda_2, \ldots, \lambda_n$ são os zeros do polinômio (7.1) e se

$$s_k = \sum_{i=1}^n \lambda_i^k \quad , \quad 1 \le k \le n \; ,$$

então, pelo Teorema 7.1, temos:

$$kp_k = s_k - p_1 \ s_{k-1} - \dots - p_{k-1} s_1 \quad , \quad 1 \le k \le n \ .$$
 (7.2)

Portanto, se conhecermos os $s_k, 1 \leq k \leq n$, poderemos determinar os coeficientes p_1, p_2, \ldots, p_n de $P(\lambda)$.

Vejamos então como determinar as somas parciais s_k . Fazendo expansão direta do determinante de $A - \lambda I$, o coeficiente de λ^{n-1} em $P(\lambda)$ é $(-1)^{n-1}(a_{11} + a_{22} + \ldots + a_{nn})$. Por outro lado esse mesmo coeficiente em (7.1) é $(-1)^{n-1}p_1$. Logo devemos ter:

$$p_1 = a_{11} + a_{22} + \ldots + a_{nn}$$
.

A soma dos elementos da diagonal principal de uma matriz A é conhecida como **traço** de A, cuja notação é tr(A). Além disso, de (7.2), $s_1 = p_1$, e assim:

$$s_1 = tr(A)$$
,

isto é, a soma dos auto-valores da matriz A é igual ao traço de A.

Então, desde que os auto-valores de A^k são a k^a potência dos auto-valores de A, (ver exercício 1.26), temos:

$$s_k = tr(A^k)$$
.

Assim os números s_1, s_2, \ldots, s_n são obtidos através do cálculo das potências de A, e (7.2) pode ser usada para determinar os coeficientes do polinômio característico. Determinando as raízes desse polinômio por qualquer dos métodos numéricos estudados no Capítulo 3, obtemos os auto-valores de A.

Exemplo 7.2 - Seja:

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{array}\right) .$$

Determinar seus auto-valores usando o Método de Leverrier.

Solução: Temos:

$$s_1 = tr(A) = 3$$
,
 $s_2 = tr(A^2)$, $A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 2 \end{pmatrix}$, $\Rightarrow s_2 = 3$,
 $s_3 = tr(A^3)$, $A^3 = A^2 \cdot A = \begin{pmatrix} 2 & 2 & -2 \\ -1 & -1 & 2 \\ -3 & 1 & 0 \end{pmatrix}$, $\Rightarrow s_3 = -3$.

Usando (7.2), obtemos:

$$\begin{array}{rclcrcl} p_1 & = & s_1 \, \Rightarrow \, p_1 \, = \, 1 \; , \\ 2p_2 & = & s_2 - p_1 s_1 \, \Rightarrow \, p_2 \, = \, 2 \; , \\ 3p_3 & = & s_3 - p_1 s_2 - p_2 s_1 \, \Rightarrow \, p_3 \, = \, -2 \; . \end{array}$$

De (7.1), segue que:

$$P(\lambda) = (-1)^{3} (\lambda^{3} - p_{1} \lambda^{2} - p_{2}\lambda - p_{3})$$

= $(-1)^{3} (\lambda^{3} - \lambda^{2} + 2\lambda - 2)$
= $-\lambda^{3} + 2\lambda^{2} - 2\lambda + 2$.

Para determinar os auto-valores de A basta determinar os zeros de $P(\lambda)$. É fácil verificar que $\lambda = 1$ é uma raiz de $P(\lambda)$. Usando o algoritmo de Briot-Ruffini-Horner, (Capítulo 3), obtemos:

Assim, $P(\lambda)=(\lambda-1)(-\lambda^2+2)$. Logo os auto-valores de A são: $\lambda_1=1,\ \lambda_2=-\sqrt{2}$ e $\lambda_3=\sqrt{2}$.

Exercícios

7.1 - Usando o método de Leverrier, determinar o polinômio característico e os auto-valores do operador $T: \mathbb{R}^3 \to \mathbb{R}^3$, definido por:

$$T(x,y,z) = (2x+y, y-z, 2y+4z)$$
.

7.2 -Seja:

$$A = \left(\begin{array}{ccc} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{array}\right) .$$

Determinar seu polinômio característico e seus auto-valores pelo processo de Leverrier.

7.3 Método de Leverrier-Faddeev

Uma modificação do método de Leverrier, devida a Faddeev, simplifica os cálculos dos coeficientes do polinômio característico e fornece, em alguns casos, os auto-vetores de A. Tal método é conhecido por **Método de Leverrier-Faddeev**.

Para descrever tal método, definimos uma sequência de matrizes:

$$A_1, A_2, \ldots, A_n,$$

do seguinte modo:

$$A_{1} = A, \quad q_{1} = trA_{1}, \quad B_{1} = A_{1} - q_{1}I;$$

$$A_{2} = AB_{1}, \quad q_{2} = \frac{trA_{2}}{2}, \quad B_{2} = A_{2} - q_{2}I,$$

$$A_{3} = AB_{2}, \quad q_{3} = \frac{trA_{3}}{3}, \quad B_{3} = A_{3} - q_{3}I;$$

$$\vdots$$

$$A_{n} = AB_{n-1}, \quad q_{n} = \frac{trA_{n}}{n}, \quad B_{n} = A_{n} - q_{n}I.$$

$$(7.3)$$

Propriedades da sequência: A_1, A_2, \dots, A_n

1ª) Os termos q_k obtidos na sequência (7.3), são os coeficientes do polinômio característico (7.1), isto é:

$$q_k = p_k, \ k = 1, 2, \dots, n$$
.

Prova: A prova será feita por indução.

- a) Desde que $A = A_1$, segue que: $q_1 = tr(A_1) = tr(A) = p_1$.
- **b)** Suponhamos que: $q_i = p_i, i = 1, 2, ..., k 1$.
- c) Provemos que: $q_k = p_k$. Por (7.3), temos:

$$A_{1} = A,$$

$$A_{2} = AB_{1} = A(A_{1} - q_{1}I) = A(A - q_{1}I) = A^{2} - q_{1}A,$$

$$A_{3} = AB_{2} = A(A_{2} - q_{2}I) = A(A^{2} - q_{1}A - q_{2}I)$$

$$= A^{3} - q_{1}A^{2} - q_{2}A,$$

$$\vdots$$

$$A_{k} = AB_{k-1} = A(A_{k-1} - q_{k-1}I)$$

$$= A^{k} - q_{1}A^{k-1} - q_{2}A^{k-2} - \dots - q_{k-1}A.$$

Desde que $q_i = p_i, i = 1, 2, \dots, k-1$, (hipótese de indução), obtemos:

$$A_k = A^k - p_1 A^{k-1} - p_2 A^{k-2} - \dots - p_{k-1} A. (7.4)$$

Aplicando traço em ambos os membros da igualdade (7.4), segue que:

$$tr(A_k) = tr(A^k) - p_1 tr(A^{k-1}) - p_2 tr(A^{k-2}) - \dots - p_{k-1} tr(A).$$

Agora, desde que $s_i = tr(A^i)$, i = 1, 2, ..., k, e, por (7.3) $q_k = \frac{tr(A_k)}{k}$, obtemos:

$$kq_k = s_k - p_1 s_{k-1} - p_2 s_{k-2} - \dots - p_{k-2} s_2 - p_{k-1} s_1 . (7.5)$$

Comparando (7.5) com (7.2), obtemos:

$$q_k = p_k$$
,

o que completa a prova.

2a) Se A é uma matriz de ordem n, então:

$$B_n = \theta$$
 (matriz nula).

Prova: Pelo Teorema de Cayley-Hamilton, (Teorema 1.8), temos:

$$A^{n} - p_{1} A^{n-1} - \ldots - p_{n-1} A - p_{n} I = \theta.$$

Mas, por (7.3), e usando a 1ª propriedade, segue que:

$$B_n = A_n - p_n I.$$

Fazendo k = n em (7.4) e substituindo o valor de A_n , na expressão anterior, obtemos:

$$B_n = A^n - p_1 A^{n-1} - \dots - p_{n-2} A^2 - p_{n-1} A - p_n I = \theta.$$

3a) Se A é uma matriz não singular, de ordem n, então:

$$A^{-1} = \frac{1}{p_n} B_{n-1} .$$

Prova: De $B_n = \theta$ e $B_n = A_n - p_n I$, temos:

$$A_n = p_n I$$
.

Mas, por (7.3),

$$A_n = AB_{n-1} .$$

Logo:

$$AB_{n-1} = p_n I .$$

Se A é não singular então existe A^{-1} . Assim, pré-multiplicando ambos os membros da igualdade anterior por A^{-1} , segue que:

$$A^{-1} = \frac{1}{p_n} B_{n-1} .$$

Observações:

- a) Com o método de Leverrier-Faddeev, obtemos o polinômio característico de A. Para determinar seus auto-valores basta determinar os zeros de $P(\lambda)$.
- b) Se ao fazer os cálculos B_n resultar numa matriz diferente da matriz nula, você terá cometido erros de cálculo.
- c) Como $B_n = \theta$ e como $B_n = A_n p_n I$ então A_n é uma matriz diagonal com todos os elementos não nulos iguais a p_n .
- d) Se A é singular então $p_n = 0$. Nesse caso $\lambda = 0$ é um auto-valor de A.

Cálculo dos Auto-Vetores

Sejam $\lambda_1, \lambda_2, \dots, \lambda_n$ auto-valores distintos de A. Mostraremos a seguir que cada coluna não nula da matriz:

$$Q_k = \lambda_k^{n-1} I + \lambda_k^{n-2} B_1 + \dots + \lambda_k B_{n-2} + B_{n-1} , \qquad (7.6)$$

é um auto-vetor correspondente ao auto-valor λ_k .

Observações:

- 1) Em (7.6), B_i , i = 1, ..., n-1, são as matrizes calculadas para a determinação dos coeficientes do polinômio característico, isto é, são as matrizes obtidas em (7.3), e λ_k é o k-ésimo auto-valor de A.
- 2) Pode-se provar que Q_k é matriz não nula se os auto-valores de A são distintos.
- 3) Pode ocorrer que mesmo com λ_i iguais a matriz Q_k não seja nula.

Provemos agora que cada coluna não nula de Q_k é um auto-vetor correspondente ao auto-valor λ_k . Temos:

$$(\lambda_k I - A) \ Q_k = (\lambda_k I - A) \left(\lambda_k^{n-1} I + \lambda_k^{n-2} B_1 + \dots + \lambda_k B_{n-2} + B_{n-1} \right)$$

$$= \lambda_k^n I + \lambda_k^{n-1} (B_1 - A) + \lambda_k^{n-2} (B_2 - AB_1) + \dots$$

$$+ \lambda_k (B_{n-1} - AB_{n-2}) - AB_{n-1}$$

$$= \lambda_k^n I - p_1 \lambda_k^{n-1} I - p_2 \lambda_k^{n-2} I - \dots - p_{n-1} \lambda_k I - p_n I = \theta ,$$

desde que λ_k é auto valor de A e portanto é raiz do polinômio característico. Assim, acabamos de mostrar que:

$$AQ_k = \lambda_k Q_k$$
,

Portanto, construídas as matrizes B_i e determinados todos os auto-valores da matriz A, para obter os auto-vetores correspondentes ao auto-valor λ_k basta calcular a matriz Q_k usando (7.6). Entretanto, observe que se u é alguma coluna não nula de Q_k , então, podemos escrever que:

$$Au = \lambda_k u$$
.

isto é, u é auto-vetor de A correspondente ao auto-valor λ_k . Assim, ao invés de determinarmos a matriz Q_k , é muito mais vantajoso calcularmos apenas uma coluna u de Q_k , da seguinte maneira: Fazemos,

$$u_0 = e$$

$$u_i = \lambda_k u_{i-1} + b_i, i = 1, 2, \dots, n-1,$$
(7.7)

onde e é uma coluna adotada da matriz identidade e b_i é sua correspondente coluna da matriz B_i , isto é, se adotamos e como sendo a i-ésima coluna da matriz identidade então $b_1, b_2, \ldots, b_{n-1}$ em (7.7) serão, respectivamente, a i-ésima coluna das matrizes $B_1, B_2, \ldots, B_{n-1}$. Logo, $u = u_{n-1}$ é o auto-vetor correspondente ao auto-valor λ_k . Note que em (7.7), i varia de 1 até i até i

Observe que se calcularmos até u_{n-1} e este resultar no vetor nulo, devemos adotar outra coluna da matriz identidade e refazer os cálculos, pois por definição o auto-vetor é um vetor não nulo.

Exemplo 7.3 - Considere a matriz dada no exemplo 7.2. Usando o método de Leverrier-Faddeev, determinar:

- a) seu polinômio característico,
- b) seus auto-valores e correspondentes auto-vetores,
- c) sua inversa.

Solução:

a) Para determinar o polinômio característico devemos construir a sequência A_1, A_2, A_3 . Assim,

usando (7.3), obtemos:

$$A_{1} = A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}, p_{1} = tr(A_{1}) \Rightarrow p_{1} = 1,$$

$$B_{1} = A_{1} - p_{1}I \Rightarrow B_{1} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix},$$

$$A_{2} = AB_{1} \Rightarrow A_{2} = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & -2 & 2 \end{pmatrix},$$

$$p_{2} = \frac{tr(A_{2})}{2} \Rightarrow p_{2} = \frac{4}{2} \Rightarrow p_{2} = 2,$$

$$B_{2} = A_{2} - p_{2}I \Rightarrow B_{2} = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & -1 \\ 0 & -2 & 0 \end{pmatrix},$$

$$A_{3} = AB_{2} \Rightarrow A_{3} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

$$p_{3} = \frac{tr(A_{3})}{3} \Rightarrow p_{3} = \frac{-6}{3} \Rightarrow p_{3} = -2,$$

$$B_{3} = A_{3} - p_{3}I \Rightarrow B_{3} = \theta.$$

Usando (7.1), segue que:

$$P(\lambda) = (-1)^{3}(\lambda^{3} - p_{1} \lambda^{2} - p_{2}\lambda - p_{3})$$

= $(-1)^{3}(\lambda^{3} - \lambda^{2} + 2\lambda - 2)$
= $-\lambda^{3} + 2\lambda^{2} - 2\lambda + 2$.

Para determinar os auto-valores de A basta determinar os zeros de $P(\lambda)$. Já fizemos esses cálculos no exemplo 7.2, e obtivemos: $\lambda_1 = 1$, $\lambda_2 = -\sqrt{2}$ e $\lambda_3 = \sqrt{2}$.

- b) Determinemos agora os auto-vetores correspondentes a esses auto-valores.
- **b.1)** Para $\lambda_1 = 1$, seja $e = (1, 0, 0)^t$. Assim:

$$u_{0} = e \Rightarrow u_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$u_{1} = \lambda_{1}u_{0} + b_{1} \Rightarrow u_{1} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \Rightarrow u_{1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},$$

$$u_{2} = \lambda_{1}u_{1} + b_{2} \Rightarrow u_{2} = 1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \Rightarrow u_{2} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}.$$

Logo $u = (0, -1, -1)^t$ é um auto-vetor correspondente ao auto-valor $\lambda_1 = 1$.

Observe que se adotamos $e = (0, 1, 0)^t$ obtemos $u_2 = (0, -1, -1)^t$ que é auto-vetor de A correspondente ao auto-valor $\lambda_1 = 1$; mas se adotamos $e = (0, 0, 1)^t$ obtemos $u_2 = (0, 0, 0)^t$ e assim com esse vetor inicial não obtemos uma resposta válida.

b.2) Para $\lambda_2 = -\sqrt{2}$, seja $e = (1, 0, 0)^t$. Assim,

$$u_{0} = e \Rightarrow u_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$u_{1} = \lambda_{2}u_{0} + b_{1} \Rightarrow u_{1} = -\sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \Rightarrow u_{1} = \begin{pmatrix} -\sqrt{2} \\ 0 \\ -1 \end{pmatrix},$$

$$u_{2} = \lambda_{2}u_{1} + b_{2} \Rightarrow u_{2} = -\sqrt{2} \begin{pmatrix} -\sqrt{2} \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \Rightarrow u_{2} = \begin{pmatrix} 1 \\ -1 \\ \sqrt{2} \end{pmatrix}.$$

Logo $u = (1, -1, \sqrt{2})^t$ é um auto-vetor correspondente ao auto-valor $\lambda_2 = -\sqrt{2}$.

Novamente, observe que se adotamos $e=(0,\ 1,\ 0)^t$ obtemos $u_2=(-1-\sqrt{2},\ 1+\sqrt{2},\ -2-\sqrt{2})^t$, enquanto que $e=(0,\ 0,\ 1)^t$ fornece $u_2=(1+\sqrt{2},\ -1-\sqrt{2},\ 2+\sqrt{2})^t$. Ambos são auto-vetores de A correspondentes ao auto-valor $\lambda_2=-\sqrt{2}$.

b.3) Para $\lambda_3 = \sqrt{2}$, seja $e = (1, 0, 0)^t$. Assim:

$$u_0 = e \implies u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} ,$$

$$u_1 = \lambda_3 u_0 + b_1 \implies u_1 = \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \implies u_1 = \begin{pmatrix} \sqrt{2} \\ 0 \\ -1 \end{pmatrix} ,$$

$$u_2 = \lambda_3 u_1 + b_2 \implies u_2 = \sqrt{2} \begin{pmatrix} \sqrt{2} \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \implies u_2 = \begin{pmatrix} 1 \\ -1 \\ -\sqrt{2} \end{pmatrix} .$$

Logo $u = (1, -1, -\sqrt{2})^t$ é um auto-vetor correspondente ao auto-valor $\lambda_3 = \sqrt{2}$.

Observe que se adotamos $e = (0, 1, 0)^t$ obtemos $u_2 = (-1 + \sqrt{2}, 1 - \sqrt{2}, -2 + \sqrt{2})^t$, enquanto que $e = (0, 0, 1)^t$ fornece $u_2 = (1 - \sqrt{2}, -1 + \sqrt{2}, 2 - \sqrt{2})^t$. Novamente, ambos são auto-vetores de A correspondentes ao auto-valor $\lambda_3 = \sqrt{2}$.

Finalmente observe que para cada auto-valor λ_k , a escolha do vetor inicial produz exatamente a coluna correspondente da matriz Q_k . Entretanto, como pode ser observado nesse exemplo, não é necessário calcular todas as colunas da matriz Q_k , isto é , basta uma, pois as colunas não nulas de Q_k são múltiplas uma das outras.

c) Pela 3^a propriedade, temos:

$$A^{-1} = \frac{1}{p_3} B_2 \ ,$$

e assim:

$$A^{-1} = \frac{1}{-2} \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & -1 \\ 0 & -2 & 0 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercícios

7.3 -Seja:

$$A = \left(\begin{array}{rrr} 3 & 3 & -3 \\ -1 & 9 & 1 \\ 6 & 3 & -6 \end{array}\right) .$$

Usando o método de Leverrier-Faddeev, determinar:

- a) seu polinômio característico,
- b) seus auto-valores e correspondentes auto-vetores,
- c) A^{-1} .

7.4 - Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$, definido por:

$$T(x,y) = (3x + 5y, 3y)$$
.

Usando o método de Leverrier-Faddeev, determinar seus auto-valores e correspondentes auto-vetores.

7.4 Método das Potências

O Método das Potências consiste em determinar o auto-valor de maior valor absoluto de uma matriz A, e seu correspondente auto-vetor, sem determinar o polinômio característico. O método é útil na prática, desde que se tenha interesse em determinar apenas alguns auto-valores, de módulo grande, e, que estes estejam bem separados, em módulo, dos demais. Podem surgir complicações caso a matriz A não possua auto-vetores linearmente independentes. O método das potências baseia-se no seguinte teorema.

Teorema 7.2 - Seja A uma matriz real de ordem n e sejam $\lambda_1, \lambda_2, \ldots, \lambda_n$ seus auto-valores e u_1, u_2, \ldots, u_n seus correspondentes auto-vetores. Suponha que os auto-vetores são linearmente independentes, e que:

$$|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_n|$$
.

Seja a sequência y_k definida por:

$$y_{k+1} = Ay_k$$
, $k = 0, 1, 2, \dots$,

onde y_0 é um vetor arbitrário, que permite a expansão:

$$y_0 = \sum_{j=1}^n c_j u_j ,$$

com c_i escalares quaisquer e $c_1 \neq 0$, então:

$$\lim_{k \to \infty} \frac{(y_{k+1})_r}{(y_k)_r} = \lambda_1 ,$$

onde o índice r indica a r-ésima componente. Além disso, quando $k \to \infty$, y_k tende ao auto-vetor correspondente a λ_1 .

Prova: Temos por hipótese que:

$$y_0 = c_1 u_1 + c_2 u_2 + \ldots + c_n u_n . (7.8)$$

Agora, lembrando que $Au_i = \lambda_i u_i$, obtemos:

$$y_{1} = Ay_{0}$$

$$= c_{1}Au_{1} + c_{2}Au_{2} + \dots + c_{n}Au_{n}$$

$$= c_{1}\lambda_{1}u_{1} + c_{2}\lambda_{2}u_{2} + \dots + c_{n}\lambda_{n}u_{n}$$

$$= \lambda_{1} \left[c_{1}u_{1} + c_{2}\frac{\lambda_{2}}{\lambda_{1}}u_{2} + \dots + c_{n}\frac{\lambda_{n}}{\lambda_{1}}u_{n} \right] ,$$

$$y_{2} = Ay_{1} = A^{2}y_{0}$$

$$= \lambda_{1} \left[c_{1}Au_{1} + c_{2}\frac{\lambda_{2}}{\lambda_{1}}Au_{2} + \dots + c_{n}\frac{\lambda_{n}}{\lambda_{1}}Au_{n} \right]$$

$$= \lambda_{1} \left[c_{1}\lambda_{1}u_{1} + c_{2}\frac{\lambda_{2}}{\lambda_{1}}\lambda_{2}u_{2} + \dots + c_{n}\frac{\lambda_{n}}{\lambda_{1}}\lambda_{n}u_{n} \right]$$

$$= \lambda_{1}^{2} \left[c_{1}u_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2}u_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{2}u_{n} \right] ,$$

$$\vdots$$

$$y_{k} = Ay_{k-1} = A^{k}y_{0}$$

$$= \lambda_{1}^{k} \left[c_{1}u_{1} + c_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}u_{2} + \dots + c_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}u_{n} \right] .$$

Desde que, por hipótese, $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$, temos então para i = 1,...,n que $\left|\frac{\lambda_i}{\lambda_1}\right| < 1$, e portanto quando $k \to \infty$, $\left(\frac{\lambda_i}{\lambda_1}\right)^k \to 0$.

Logo, o vetor:

$$\left[c_1 u_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^p u_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1}\right)^p u_n\right],$$

converge para c_1u_1 que é um múltiplo do auto-vetor correspondente ao auto-valor λ_1 .

Assim, λ_1 é obtido de:

$$\lambda_1 = \lim_{k \to \infty} \frac{(y_{k+1})_r}{(y_k)_r} = \lim_{k \to \infty} \frac{(A^{k+1}y_0)_r}{(A^k y_0)_r} , r = 1, 2, \dots n.$$
 (7.9)

e isso conclui a prova.

Observe então que, teoricamente, a partir de (7.9) obtemos o auto-valor de maior valor absoluto de uma matriz A. Na prática, para obter λ_1 , utilizamos o algoritmo dado a seguir.

A partir de um vetor y_k , arbitrário, não nulo, construímos dois outros vetores y_{k+1} e z_{k+1} , do seguinte modo:

$$z_{k+1} = Ay_k$$

$$y_{k+1} = \frac{1}{\alpha_{k+1}} z_{k+1}, \text{ onde } \alpha_{k+1} = \max_{1 \le r \le n} |(z_{k+1})_r|,$$

ou seja: dado um vetor y_0 qualquer, não nulo, construímos a sequência:

$$z_{1} = Ay_{0}$$

$$y_{1} = \frac{1}{\alpha_{1}}z_{1} = \frac{1}{\alpha_{1}}Ay_{0}$$

$$z_{2} = Ay_{1} = \frac{1}{\alpha_{1}}A^{2}y_{0}$$

$$y_{2} = \frac{1}{\alpha_{2}}z_{2} = \frac{1}{\alpha_{1}\alpha_{2}}A^{2}y_{0}$$

$$z_{3} = Ay_{2} = \frac{1}{\alpha_{1}\alpha_{2}}A^{3}y_{0}$$

$$\vdots$$

$$y_{k} = \frac{1}{\alpha_{k}}z_{k} = \frac{1}{\alpha_{1}\alpha_{2}\dots\alpha_{k}}A^{k}y_{0}$$

$$z_{k+1} = Ay_{k} = \frac{1}{\alpha_{1}\alpha_{2}\dots\alpha_{k}}A^{k+1}y_{0}.$$

Assim, para obtermos λ_1 , calculamos:

$$\lim_{k \to \infty} \frac{(z_{k+1})_r}{(y_k)_r} = \lim_{k \to \infty} \frac{(A^{k+1}y_0)_r}{(A^k y_0)_r} = \lambda_1 .$$

Observe que podemos garantir que o valor resultante fornece λ_1 desde que obtemos a mesma expressão dada por (7.9). Assim, pelo algoritmo, temos que:

$$\lim_{k \to \infty} \frac{(z_{k+1})_r}{(y_k)_r} = \lambda_1 . \tag{7.10}$$

Observações:

- a) No limite, todas as componentes de $\frac{(z_{k+1})_r}{(y_k)_r}$ de (7.10), tendem a λ_1 . Entretanto, na prática, uma das componentes converge mais rapidamente do que as outras. Assim, quando uma das componentes satisfizer a precisão desejada teremos o auto-valor procurado. Além disso, a velocidade de convergência depende de $\frac{\lambda_2}{\lambda_1}$. Portanto, quanto maior for $|\lambda_1|$ quando comparado com $|\lambda_2|$, mais rápida será a convergência.
- b) Para obtermos λ_1 com uma precisão ϵ , em cada passo calculamos aproximações para λ_1 usando (7.10). O teste do erro relativo para cada componente de λ_1 , isto é:

$$\frac{|\lambda_1^{(k+1)} - \lambda_1^{(k)}|_r}{|\lambda_1^{(k+1)}|_r} < \epsilon ,$$

é usado como critério de parada.

- c) Quando todas as componentes de (7.10) forem iguais, então o vetor y_k dessa iteração é o auto-vetor correspondente ao auto-valor λ_1 .
- d) Se algum vetor resultar no vetor nulo, o método falha. Tal acontecimento deve ocorrer se as hipóteses não foram satisfeitas.

e) No Teorema 7.2 é feita a hipótese de $c_1 \neq 0$. Se $c_1 = 0$, então a prova do Teorema 7.2 indica que, teoricamente, o vetor y_k converge para u_2 . Entretanto, na prática, para matrizes de ordem $n \geq 3$, que satisfaçam as demais condições do citado teorema, o método funciona sempre, pois, mesmo que o vetor y_0 não tenha componentes na direção de u_1 , e desde que o método envolve a cada iteração uma divisão, os erros de arredondamento da máquina farão com que y_1 passe a ter componente nessa direção, após uma ou duas iterações.

Exemplo 7.4 - Usando o método das potências determinar o auto-valor de maior valor absoluto da matriz:

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 2 & 2 \\ 4 & 2 & 5 \end{pmatrix},$$

com precisão de 10^{-2} .

Solução: Tomemos $y_0 = (1, 1, 1)^t$. Temos:

$$z_{1} = Ay_{0} = \begin{pmatrix} 4 \\ 6 \\ 11 \end{pmatrix} ; \alpha_{1} = \max |(z_{1})_{r}| = \max(|4|, |6|, |11|) = 11 .$$

$$y_{1} = \frac{1}{\alpha_{1}} z_{1} = \begin{pmatrix} 0.3636 \\ 0.5455 \\ 1 \end{pmatrix} , z_{2} = Ay_{1} = \begin{pmatrix} 2.0908 \\ 3.8182 \\ 7.5454 \end{pmatrix} .$$

Podemos então calcular uma 1ª aproximação para λ_1 , usando (7.10). Logo:

$$\lambda_1^{(1)} = \frac{(z_2)_r}{(y_1)_r} = \begin{pmatrix} 5.7503 \\ 6.9995 \\ 7.5454 \end{pmatrix}.$$

Agora desde que $\alpha_2 = \max\{|2.0908|, |3.8182|, |7.5454|\} = 7.5454$, obtemos:

$$y_2 = \frac{1}{\alpha_2} z_2 = \begin{pmatrix} 0.2771 \\ 0.5060 \\ 1 \end{pmatrix}, z_3 = Ay_2 = \begin{pmatrix} 1.8313 \\ 3.5662 \\ 7.1204 \end{pmatrix},$$

Novamente, obtemos uma nova aproximação para λ_1 , fazendo:

$$\lambda_1^{(2)} = \frac{(z_3)_r}{(y_2)_r} = \begin{pmatrix} 6.6088\\ 7.0478\\ 7.1204 \end{pmatrix}.$$

Calculando então o erro relativo, obtemos:

$$\frac{|\lambda_1^{(2)} - \lambda_1^{(1)}|_r}{|\lambda_1^{(2)}|_r} \simeq \begin{pmatrix} 0.13\\ 0.07\\ 0.13 \end{pmatrix} ,$$

o qual possui todas as componentes maiores que 10^{-2} . Assim, devemos fazer uma nova iteração. Agora desde que $\alpha_3 = 7.1204$, segue que:

$$y_3 = \frac{1}{\alpha_3} z_3 = \begin{pmatrix} 0.2572 \\ 0.5008 \\ 1 \end{pmatrix}, z_4 = Ay_3 = \begin{pmatrix} 1.8256 \\ 3.5160 \\ 7.0304 \end{pmatrix}$$
$$\Rightarrow \lambda_1^{(3)} = \frac{(z_4)_r}{(y_3)_r} = \begin{pmatrix} 7.0980 \\ 7.0208 \\ 7.0304 \end{pmatrix}.$$

Novamente, calculando o erro relativo:

$$\frac{|\lambda_1^{(3)} - \lambda_1^{(2)}|_r}{|\lambda_1^{(2)}|_r} \simeq \begin{pmatrix} 0.069\\0.004\\0.013 \end{pmatrix} ,$$

vemos que a segunda componente é menor que 10^{-2} . Portanto,

$$\lambda_1 \simeq 7.0208 \text{ com } \epsilon < 10^{-2} \text{ e } u_1 \simeq \begin{pmatrix} 0.2572\\ 0.5008\\ 1 \end{pmatrix} = y_3.$$

Observações:

- 1) É claro que se desejamos λ_1 com precisão maior basta continuar fazendo iterações.
- **2)** Os auto-valores de A são: 1,2 e 7 com auto-vetores: $(0.5, 1, -1)^t$, $(-1, 0.5, 1)^t$ e $(0.25, 0.5, 1)^t$, respectivamente.
- 3) O método das potências deve ser aplicado se o objetivo é determinar o auto-valor de maior valor absoluto de uma matriz. A desvantagem desse método é que ele fornece apenas um auto-valor de cada vez. Se todos os auto-valores são procurados devemos aplicar outros métodos que são muito mais eficientes.
- 4) Algumas vezes o maior auto-valor, em módulo, é o mais importante, mas se não é, devemos modificar o método. Em alguns problemas, o mais importante é a determinação do auto-valor de menor valor absoluto. Para isso dispomos da seguinte estratégia.

7.4.1 Método da Potência Inversa

O Método da Potência Inversa é usado para determinar o auto-valor de menor valor absoluto e seu correspondente auto-vetor de uma matriz A. O método é útil na prática, desde que se tenha interesse em determinar apenas o auto-valor, de menor módulo, e, que este esteja bem separado dos demais. Novamente, o método pode não funcionar caso a matriz A não possua auto-vetores linearmente independentes. O método da potência inversa é semelhante ao método das potências, com a diferença que agora assumimos:

$$|\lambda_1| > |\lambda_2| > \ldots | > \lambda_{n-1} | > |\lambda_n|$$

e desejamos determinar λ_n .

Sabemos que se λ é auto-valor de A, então λ^{-1} é auto-valor de A^{-1} . Além disso, se $|\lambda_n|$ é o menor auto-valor de A, então $|\lambda_n^{-1}|$ é o maior auto-valor de A^{-1} . Assim, o método da potência inversa consiste em calcular pelo método das potências o auto-valor de maior valor absoluto de A^{-1} , pois assim teremos o menor auto-valor, em módulo, de A. Portanto, dado y_k , construímos dois outros vetores y_{k+1} e z_{k+1} da seguinte forma :

$$z_{k+1} = A^{-1}y_k$$

$$y_{k+1} = \frac{1}{\alpha_{k+1}} z_{k+1}, \text{ onde } \alpha_{k+1} = \max_{1 \le r \le n} |(z_{k+1})_r|,$$

e portanto:

$$\lambda_n^{-1} = \frac{(z_{k+1})_r}{(y_k)_r} .$$

Note que na prática não é necessário calcular A^{-1} , pois de:

$$z_{k+1} = A^{-1}y_k \Rightarrow Az_{k+1} = y_k$$

e assim resolvemos o sistema usando a **Decomposição LU**(ver Capítulo 4). Este método é particularmente conveniente desde que as matrizes L e U são independentes de k e portanto basta obtê-las uma única vez.

Exemplo 7.5 - Deteminar o menor auto-valor, em módulo, da matriz:

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 2 & 5 & 3 \\ 0 & 1 & 6 \end{array}\right) ,$$

usando o método da potência inversa.

Solução: Os auto-valores de A são: $\lambda_1 = 7.44437$, $\lambda_2 = 4.21809$ e $\lambda_3 = 1.33754$. Portanto o maior auto-valor de A^{-1} é $\lambda_3^{-1} = \frac{1}{1.33754} \simeq 0.7476$, e é esse valor que desejamos encontrar. Decompondo A em LU, obtemos:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0.25 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 4 & 3 \\ 0 & 0 & 5.25 \end{pmatrix}.$$

Assim, tomando $y_0 = (1, 1, 1)^t$ em $Az_1 = y_0$ ou seja fazendo $LUz_1 = y_0$, segue que:

$$z_1 = \begin{pmatrix} 0.5715 \\ -0.1429 \\ 0.1905 \end{pmatrix} , \ \alpha_1 = 0.5715 , \ \ y_1 = \frac{1}{\alpha_1} z_1 = \begin{pmatrix} 1 \\ -0.2500 \\ 0.3333 \end{pmatrix} .$$

Resolvendo agora $LUz_2 = y_1$, obtemos:

$$z_2 = \begin{pmatrix} 0.7024 \\ -0.4048 \\ 0.1230 \end{pmatrix} \Rightarrow \lambda_3^{-1} = \frac{(z_2)_r}{(y_1)_r} = \begin{pmatrix} 0.7024 \\ 1.6192 \\ 0.3690 \end{pmatrix}.$$

Agora, $\alpha_2 = 0.7024$. Continuando o processo, obtemos:

$$y_{2} = \frac{1}{\alpha_{2}} z_{2} = \begin{pmatrix} 1 \\ -0.5763 \\ 0.1751 \end{pmatrix}, \text{ e de } LUz_{3} = y_{2} \Rightarrow z_{3} = \begin{pmatrix} 0.7377 \\ -0.4754 \\ 0.1084 \end{pmatrix}$$

$$\Rightarrow \lambda_{3}^{-1} = \frac{(z_{3})_{r}}{(y_{2})_{r}} = \begin{pmatrix} 0.7377 \\ 0.8249 \\ 0.6192 \end{pmatrix}. \text{ Temos : } \alpha_{3} = 0.7377, \text{ e assim :}$$

$$y_{3} = \frac{1}{\alpha_{3}} z_{3} = \begin{pmatrix} 1 \\ -0.6444 \\ 0.1469 \end{pmatrix} \text{ e de } LUz_{4} = y_{3} \Rightarrow z_{4} = \begin{pmatrix} 0.7454 \\ -0.4908 \\ 0.1063 \end{pmatrix}.$$

$$\Rightarrow \lambda_{3}^{-1} = \frac{(z_{4})_{r}}{(y_{3})_{r}} = \begin{pmatrix} 0.7454 \\ 0.7617 \\ 0.7235 \end{pmatrix}. \text{ Finalmente, } \alpha_{4} = 0.7454, \text{ e portanto :}$$

$$y_4 = \frac{1}{\alpha_4} z_4 = \begin{pmatrix} 1\\ -0.6584\\ 0.1426 \end{pmatrix} \text{ e de } LUz_5 = y_4 \implies z_5 = \begin{pmatrix} 0.7471\\ -0.4942\\ 0.1061 \end{pmatrix} ,$$

$$\Rightarrow \lambda_3^{-1} = \frac{(z_5)_r}{(y_4)_r} = \begin{pmatrix} 0.7471\\ 0.7506\\ 0.7443 \end{pmatrix} .$$

Logo $\lambda_3^{-1} \simeq 0.7471$ é o auto-valor de maior valor absoluto de A^{-1} . Portanto $\frac{1}{\lambda_3^{-1}} \simeq 1.3385$ é o auto-valor de menor valor absoluto de A.

7.4.2 Método das Potências com Deslocamento

Suponha agora que A tem auto-valores λ_i , reais, com

$$\lambda_1 > \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_{n-1} > \lambda_n$$
.

e considere a sequência de vetores definida por:

$$z_{k+1} = (A - qI)y_k$$

$$y_{k+1} = \frac{1}{\alpha_{k+1}} z_{k+1}, \text{ onde } \alpha_{k+1} = \max_{1 \le r \le n} |(z_{k+1})_r|,$$

onde I é a matriz identidade de ordem n e q é um parâmetro qualquer. Isto é chamado **Método das Potências** com Deslocamento, porque A-qI tem auto-valores λ_i-q , isto é, os auto-valores de A são deslocados q unidades na reta real. Os auto-vetores de A-qI são os mesmos da matriz A.

Portanto o Teorema 7.2 pode ser aplicado à matriz A - qI, e pode ser mostrado que y_k converge para o auto-vetor correspondente àquele que maximiza $|\lambda_i - q|$. Portanto se:

$$\begin{array}{lll} q & < & \displaystyle \frac{\lambda_1 + \lambda_n}{2} & \text{então} \ y_k \to u_1 \ \text{e} \ \lim_{k \to \infty} \ \displaystyle \frac{(z_{k+1})_r}{(y_k)_r} \to \lambda_1 - q \ , \\ \\ q & > & \displaystyle \frac{\lambda_1 + \lambda_n}{2} & \text{então} \ y_k \to u_n \ \text{e} \ \lim_{k \to \infty} \ \displaystyle \frac{(z_{k+1})_r}{(y_k)_r} \to \lambda_n - q \ , \end{array}$$

Assim, a escolha apropriada de q pode ser usada para determinar os dois auto-valores extremos, correspondendo ao maior e ao menor auto-valor de A. Observe que se $q=(\lambda_1+\lambda_n)/2$ então $\lambda_1-q=-(\lambda_n-q)$, e assim A-qI tem dois auto-valores de mesmo módulo, mas de sinais opostos. Neste caso, a sequência de vetores oscilará entre dois limites os quais são duas combinações de u_1 e u_2 .

O auto-valor e o auto-vetor dominante são usualmente calculados tomando um deslocamento zero, isto é, o cálculo para determinar λ_1 e u_1 são realizados na matriz A, através do método das potências. A matriz pode então ser deslocada de λ_1 para estimar o auto-valor λ_n .

Exemplo 7.6 - Determinar o auto-valor de menor valor absoluto da matriz dada no exemplo 7.4, usando o método das potências com deslocamento.

Solução: No exemplo 7.4, o auto-valor de maior valor absoluto foi estimado \simeq 7. Assim, para determinar o auto-valor de menor valor absoluto, vamos aplicar o método das potências na matriz:

$$A - 7I = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -5 & 2 \\ 4 & 2 & -2 \end{pmatrix} = A^*.$$

Iniciando com $y_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, obtemos:

$$z_{1} = A^{*}y_{0} = \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix} ; \alpha_{1} = \max |(z_{1})_{r}| = 4 .$$

$$y_{1} = \frac{1}{\alpha_{1}}z_{1} = \begin{pmatrix} -0.75 \\ -0.25 \\ 1 \end{pmatrix} , z_{2} = A^{*}y_{1} = \begin{pmatrix} 4.00 \\ 1.75 \\ -5.50 \end{pmatrix} .$$

Podemos, então, calcular uma primeira aproximação para λ_1^* . Assim:

$$\lambda_1^{*(1)} = \frac{(z_2)_r}{(y_1)_r} = \begin{pmatrix} -5.33 \\ -7.00 \\ -5.50 \end{pmatrix}.$$

Continuando o processo, obteremos:

$$y_{19} = \begin{pmatrix} -0.52 \\ -0.94 \\ 1 \end{pmatrix}, z_{20} = A^* y_{19} = \begin{pmatrix} 3.03 \\ 5.71 \\ -5.98 \end{pmatrix}$$

$$\Rightarrow \lambda_1^{*(19)} = \frac{(z_{20})_r}{(y_{19})_r} = \begin{pmatrix} -5.92 \\ -5.95 \\ -5.98 \end{pmatrix}.$$

Assim, podemos concluir que o auto-valor dominante de A^* é aproximadamente -5.98 com auto-vetor aproximado $u_1^* = (-0.52, -0.94, 1)^t$. Portanto a matriz original possui o mesmo auto-vetor mas seu auto-valor é -5.98+7.00=1.02. A lentidão na convergência neste caso se deve ao fato que os auto-valores de A^* são: -6, -5 e 0 e assim a convergência é governada pelo fator: $\left(\frac{5}{6}\right)^k$. Compare com o exemplo 7.4, e 7.5, onde a razão de convergência é $\left(\frac{2}{7}\right)^k$ e $\left(\frac{1.33754}{4.21809}\right)^k$, respectivamente.

Em geral, se $y_k \to u_1$, então na presença do deslocamento q, a velocidade de convergência depende de:

$$\left(\frac{\lambda_i - q}{\lambda_1 - q}\right)^k ,$$

e assim uma escolha adequada de q pode acelerar a convergência. Por exemplo, se A é uma matriz de ordem 3, com auto-valores: 5, 7 e 10, sem deslocamento a convergência depende de $\left(\frac{7}{10}\right)^k$, mas com um deslocamento de 6 dependerá de $\left(\frac{1}{4}\right)^k$, pois A-6I tem auto-valores: -1, 1 e 4.

Portanto, na prática não é trivial encontrar o melhor valor de q, a menos que alguns dos auto-valores sejam conhecidos a priori. O método das potências e /ou o método das potências $com\ deslocamento$ devem ser utilizados se apenas um ou dois dos auto-valores são desejados. Se o objetivo é determinar mais auto-valores então o método da potência inversa $com\ deslocamento$ pode ser usado, ou seja, como no método da potência inversa, calculamos:

$$(A - qI)z_{k+1} = y_k ,$$

usando a decomposição LU, e assim os auto valores de $(A-qI)^{-1}$ serão $\frac{1}{(\lambda_i-q)}$. Novamente, o Teorema 7.2 pode ser aplicado a $(A-qI)^{-1}$ e deduzimos que y_k converge para o auto-vetor correspondente ao auto-valor que maximiza $\frac{1}{|\lambda_i-q|}$. Escolhas adequadas dos valores de q nos permitem determinar todos os auto-valores de A, e não somente aqueles correspondentes aos auto-valores extremos. Assim, se o auto-valor próximo a q é λ_j , então o valor de λ_j pode ser calculado a partir de:

$$\bar{\lambda}_j = \frac{1}{(\lambda_j - q)} ,$$

onde $\bar{\lambda}_i$ é o auto-valor de $(A-qI)^{-1}$, obtido pelo método da potência inversa com deslocamento q.

Exemplo 7.7 - Determinar o segundo maior auto-valor, em valor absoluto, da matriz dada no exemplo 7.4.

Solução: Já determinamos dois auto-valores desta matriz: 7 e 1.02 (Exemplos 7.4 e 7.6). Sabemos que o **traço** de uma matriz é igual a soma dos seus auto-valores . Neste exemplo o traço de A é 10 e assim o outro auto-valor é aproximadamente 1.98, o qual será tomado como o valor de q na iteração inversa com deslocamento. Assim, montamos a matriz:

$$A - 1.98I = \begin{pmatrix} 1.02 & 0 & 1 \\ 2 & 0.02 & 2 \\ 4 & 2 & 3.02 \end{pmatrix} ,$$

e a decompomos no produto LU, onde:

$$L = \begin{pmatrix} 1 \\ 1.9608 & 1 \\ 3.9216 & 100 & 1 \end{pmatrix}, U = \begin{pmatrix} 1.02 & 0 & 1 \\ & 0.02 & 0.0392 \\ & & -4.8216 \end{pmatrix}.$$

Tomando como vetor inicial $y_0 = (1, 1, 1)^t$, e resolvendo o sistema linear $LUz_1 = y_0$, resulta :

$$z_1 = \begin{pmatrix} 19.9226 \\ -10.1707 \\ -19.3211 \end{pmatrix} \Rightarrow y_1 = \frac{1}{19.9226} z_1 = \begin{pmatrix} 1 \\ -0.5105 \\ -0.9698 \end{pmatrix}$$

De $LUz_2 = y_1$, obtemos:

$$z_2 = \begin{pmatrix} 50.2356 \\ -25.0940 \\ -50.2403 \end{pmatrix} \Rightarrow \lambda_2^{*(1)} = \frac{z_2}{y_1} = \begin{pmatrix} 50.2356 \\ 49.0500 \\ 51.8048 \end{pmatrix}.$$

Agora,

$$y_2 = \frac{1}{-50.2403} z_2 = \begin{pmatrix} -0.9999 \\ 0.4995 \\ 1 \end{pmatrix} .$$

Fazendo $LUz_3 = y_2$, obtemos:

$$z_3 = \begin{pmatrix} -50.4088 \\ 24.1885 \\ 50.4166 \end{pmatrix} \rightarrow \lambda_2^{*(2)} = \frac{z_3}{y_2} = \begin{pmatrix} 50.4138 \\ 48.3180 \\ 51.4166 \end{pmatrix}.$$

Assim, $\lambda_2^* \simeq 50.41$. Portanto, o segundo maior auto-valor, em valor absoluto de A é:

$$\lambda_2 = 1.98 + \frac{1}{50.41} = 1.9998$$
.

Observe que o sucesso do método das potências com deslocamento depende de nossa habilidade em obter estimativas precisas para usar no deslocamento. Neste último exemplo, uma estimativa para λ_2 foi obtida usando a relação entre o traço da matriz e a soma dos auto-valores. Infelizmente, para matrizes de ordem > 3, não é fácil obter valores apropriados para os deslocamentos. Como já dissemos anteriormente, se desejamos todos os auto-valores devemos usar outros métodos.

Exercícios

7.5 - Determinar o auto-valor de maior valor absoluto e seu correspondente auto-vetor, da matriz:

$$A = \left(\begin{array}{rrr} 1 & -1 & 3 \\ -1 & 1 & 3 \\ 3 & -3 & 9 \end{array}\right) .$$

, calculando apenas a primeira aproximação pelo método das potências. O qua você pode concluir?

7.6 - Usando o método das potências calcular, o auto-valor de maior valor absoluto e seu correspondente auto-vetor, da matriz:

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right) .$$

com precisão de 10^{-2} .

7.7 - Usando o método da potência inversa, calcule o auto-valor de menor valor absoluto da matriz:

$$A = \left(\begin{array}{ccc} 2 & 4 & -2 \\ 4 & 2 & 2 \\ -2 & 2 & 5 \end{array}\right) ,$$

com precisão de 10^{-2} .

7.8 - Sabendo que o auto-valor de maior valor absoluto da matriz:

$$A = \left(\begin{array}{ccc} 4 & -1 & 1\\ 1 & 1 & 1\\ -2 & 0 & -6 \end{array}\right) ,$$

é aproximadamente: -5.76849, e que seu correspondente auto-vetor é aproximadamente: $(-0.1157, -0.1306, 1)^t$, calcule os demais auto-valores e correspondentes auto-vetores de A, usando:

- a) o método das potências com deslocamento para obter o menor auto-valor, em valor absoluto,
- b) o método da potência inversa com deslocamento para obter o auto-valor λ_2 .

7.5 Auto-Valores de Matrizes Simétricas

Nessa seção restringiremos nossa atenção para matrizes simétricas de ordem n. Matrizes deste tipo possuem auto-valores reais e os auto-vetores são linearmente independentes. O método de Jacobi, que descreveremos mais adiante, é usado para determinar os auto-valores e auto-vetores, de matrizes simétricas, através de uma série de transformações similares:

$$A_{k+1} = U_k^{-1} A_k U_k , \quad k = 1, 2, \dots ,$$

onde $A_1 = A$. As matrizes A_1, A_2, \ldots convergem num número infinito de passos para uma matriz diagonal. Os auto-valores e auto-vetores são então determinados em virtude do Lema 1.1 (o qual se aplica tanto para matrizes simétricas como para matrizes não simétricas).

Assim, após m passos do método de Jacobi, obteremos:

$$A_{m+1} = U_m^{-1} \dots U_2^{-1} U_1^{-1} A_1 U_1 U_2 \dots U_m .$$

Portanto, se $A_{m+1} \simeq D$, segue que os elementos diagonais de A_{m+1} são aproximações para os autovalores de A e as colunas de $V = U_1 U_2 \dots U_m$ são aproximações para os auto-vetores.

Para descrevermos o método de Jacobi, (para matrizes simétricas), precisamos de alguns conceitos, os quais passamos a considerar agora. Assim:

Rotação de Jacobi

Seja A uma matriz simétrica. Uma rotação (p,q) de Jacobi é a operação U^tAU com U dada por (1.23). Observe que fazer uma rotação de Jacobi é efetuar uma transformação de semelhança na matriz A.

Para um melhor entendimento, consideremos inicialmente, uma rotação (2,4) de Jacobi, em uma matriz A de ordem 4. Efetuando o produto U^tA , obtemos:

$$U^{t}A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & 0 & -\sin \varphi \\ 0 & 0 & 1 & 0 \\ 0 & \sin \varphi & 0 & \cos \varphi \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21}c - a_{41}s & a_{22}c - a_{42}s & a_{23}c - a_{43}s & a_{24}c - a_{44}s \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21}s - a_{41}c & a_{22}s + a_{42}c & a_{23}s - a_{43}c & a_{24}s - a_{44}c \end{pmatrix}$$

$$=\ A'=\ (a'_{ij}), \ {\rm onde}\ cos\ \varphi=c\ {\rm e}\ sen\ \varphi=s.$$

Fazendo agora o produto A'U, segue que:

$$A'U = \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} & a'_{14} \\ a'_{21} & a'_{22} & a'_{23} & a'_{24} \\ a'_{31} & a'_{32} & a'_{33} & a'_{34} \\ a'_{41} & a'_{42} & a'_{43} & a'_{44} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & 0 & \sin \varphi \\ 0 & 0 & 1 & 0 \\ 0 & -\sin \varphi & 0 & \cos \varphi \end{pmatrix}$$

$$= \left(\begin{array}{ccccc} a'_{11} & a'_{12}c - a'_{14}s & a'_{13} & a'_{12}s + a'_{14}c \\ a'_{21} & a'_{22}c - a'_{24}s & a'_{23} & a'_{22}s + a'_{24}c \\ a'_{31} & a'_{32}c - a'_{34}s & a'_{33} & a'_{32}s + a'_{34}c \\ a'_{41} & a'_{42}c - a'_{44}s & a'_{43} & a'_{42}s + a'_{44}c \end{array} \right) = A'' = (a''_{ij}) \; .$$

Assim, de um modo geral, para uma matriz de ordem n o produto U^tA , fornece uma matriz A', onde:

$$\begin{cases}
 a'_{pj} = a_{pj} \cos \varphi - a_{qj} \sin \varphi, & 1 \leq j \leq n, \\
 a'_{qj} = a_{pj} \sin \varphi + a_{qj} \cos \varphi, & 1 \leq j \leq n, \\
 a'_{ij} = a_{ij}, & i \neq p, q, & 1 \leq j \leq n.
\end{cases}$$
(7.11)

e o produto A'U fornece uma matriz A'', onde:

$$\begin{cases}
 a''_{ip} = a'_{ip} \cos \varphi - a'_{iq} \sin \varphi, & i \leq i \leq n, \\
 a''_{iq} = a'_{ip} \sin \varphi + a'_{iq} \cos \varphi, & i \leq i \leq n, \\
 a''_{ij} = a'_{ij}, \quad j \neq p, q, & i \leq i \leq n.
\end{cases}$$
(7.12)

Portanto, a matriz A'' tem a seguinte forma:

$$A'' = \left(\begin{array}{cccc} \ddots & \vdots & & \vdots & \\ \dots & \bigcirc & \dots & \bigcirc & \dots & p \\ & \vdots & \ddots & \vdots & \\ \dots & \bigcirc & \dots & \bigcirc & \dots & q \\ & \vdots & & \vdots & \ddots & \\ p & & q & \end{array} \right) ,$$

isto é, na matriz A'' apenas os elementos das linhas e colunas p e q serão alterados, sendo que os elementos a_{pp} , a_{pq} , a_{qp} , a_{qq} serão transformados duas vezes. Portanto A'' continua simétrica.

Vejamos agora as fórmulas que determinam a passagem de $A \to A''$, denominada **Rotação de Jacobi** de um ângulo φ para os elementos da interseção. Temos, utilizando (7.12) e (7.11), que:

1)
$$a_{pp}^{\prime\prime} = a_{pp}^{\prime} \cos \varphi - a_{pq}^{\prime} \sec \varphi$$

 $= (a_{pp} \cos \varphi - a_{qp} \sec \varphi) \cos \varphi -$
 $- (a_{pq} \cos \varphi - a_{qq} \sec \varphi) \sec \varphi$.

Portanto:

$$a_{pp}^{"} = a_{pp} \cos^2 \varphi - 2a_{pq} \sin \varphi \cos \varphi + a_{qq} \sin^2 \varphi.$$
 (7.13)

2)
$$a''_{qq} = a'_{gp} \operatorname{sen} \varphi + a'_{qq} \cos \varphi$$

 $= (a_{pp} \operatorname{sen} \varphi + a_{qp} \cos \varphi) \operatorname{sen} \varphi +$
 $+ (a_{pq} \operatorname{sen} \varphi - a_{qq} \cos \varphi) \cos \varphi$.

Logo:

$$a''_{qq} = a_{pp} \ sen^2 \varphi + 2a_{pq} \ sen \varphi \cos \varphi + a_{qq} \cos^2 \varphi . \tag{7.14}$$

3)
$$a''_{pq} = a'_{pp} \operatorname{sen} \varphi + a'_{pq} \cos \varphi$$

 $= (a_{pp} \cos \varphi - a_{qp} \operatorname{sen} \varphi) \operatorname{sen} \varphi +$
 $+ (a_{pq} \cos \varphi - a_{qq} \operatorname{sen} \varphi) \cos \varphi$.

Assim:

$$a_{pq}^{"} = a_{qp}^{"} = (a_{pp} - a_{qq}) \operatorname{sen} \varphi \cos \varphi + a_{pq} (\cos^2 \varphi - \operatorname{sen}^2 \varphi) . \tag{7.15}$$

Portanto, para fazer uma rotação (p,q)de Jacobi, usamos as fórmulas: (7.13), (7.14), (7.15), (7.12) com $j \neq p, q$ e (7.11) com $i \neq p, q$.

Exemplo 7.8 - Considere a matriz:

$$A = \left(\begin{array}{cccc} 2 & 1 & 3 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & -1 & 3 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right) .$$

Fazer uma rotação de $\varphi = \frac{\pi}{2}$ em torno do elemento (p,q) = (1,3).

Solução: Temos:

$$\cos \varphi = \cos 90^{\circ} = 0$$
,
 $\sin \varphi = \sin 90^{\circ} = 1$.

Agora, utilizando as fórmulas anteriores, obtemos:

de (7.7)
$$\Rightarrow a_{11}'' = a_{11} c^2 - 2a_{13} s c + a_{33} s^2 = a_{33} = 3$$
,
de (7.8) $\Rightarrow a_{33}'' = a_{11} s^2 + 2a_{13} s c + a_{33} c^2 = a_{11} = 2$,
de (7.9) $\Rightarrow a_{13}'' = a_{31}'' = (a_{11} - a_{33}) s c + a_{13} (c^2 - s^2) = -a_{13} = -3$.

Usando (7.12) e (7.11), segue que:

$$\begin{aligned} a_{12}'' &=& a_{12}' = a_{12} \ c - a_{32} \ s = -a_{32} = 1 = a_{21}'' \ , \\ a_{14}'' &=& a_{14}' = a_{14} \ c - a_{34} \ s = -a_{34} = 0 = a_{41}'' \ , \\ a_{32}'' &=& a_{32}' = a_{12} \ s + a_{32} \ c = a_{12} = 1 = a_{23}'' \ , \\ a_{34}'' &=& a_{34}' = a_{14} \ s + a_{34} \ c = a_{14} = 1 = a_{43}'' \ . \end{aligned}$$

Assim:

$$A'' = \left(\begin{array}{rrrr} 3 & 1 & -3 & 0 \\ 1 & 0 & 1 & 0 \\ -3 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 \end{array}\right) ,$$

corresponde a uma rotação de 90° em torno do elemento (1,3).

7.5.1 Método Clássico de Jacobi

O Método Clássico de Jacobi, ou simplesmente Método de Jacobi, como já dissemos, é um método numérico que serve para determinar auto-valores e auto-vetores de matrizes simétricas. Dada a matriz A, efetuamos uma sequência de rotações:

$$A_1 = A \; ; \; A_2 = U_1^t \; A_1 \; U_1 \; \to \; A_3 = U_2^t \; A_2 \; U_2 \; \to \\ \to \dots \; \to \; A_{k+1} = U_k^t \; A_k \; U_k \simeq D \; ,$$

onde U_i , $i = 1, 2 \dots k$ são matrizes de rotação, e D é uma matriz diagonal.

O processo para construção da matriz A_2 , consiste em escolhermos entre os elementos não diagonais de A o elemento de maior valor absoluto, isto é:

$$a_{pq} = \max_{i \neq j} (a_{ij}) .$$

Fazer então, uma rotação com a finalidade de zerar o elemento a_{pq} . A seguir reaplicamos o processo à matriz resultante tantas vezes quantas forem necessárias, de tal modo a reduzirmos a matriz A a uma matriz diagonal D, cujos elementos são os auto-valores de A.

Assim, no primeiro passo devemos zerar o elemento a_{pq} . Assumimos que $a_{pq} \neq 0$, (pois caso contrário nada teríamos a fazer), e assim nosso objetivo é obter $a''_{pq} = 0$. De (7.15), temos a expressão para a''_{pq} e impondo que o mesmo seja identicamente nulo, segue que:

$$(a_{pp} - a_{qq})\underbrace{\cos \varphi \operatorname{sen} \varphi}_{\frac{1}{2}\operatorname{sen}2\varphi} + \operatorname{apq}(\underbrace{\cos^2 \varphi - \operatorname{sen}^2 \varphi}_{\cos 2\varphi}) = 0.$$

Portanto:

$$a_{pp} - a_{qq} = -\frac{a_{pq} \cos 2 \varphi}{\frac{1}{2} \sin 2 \varphi} = -2 a_{pq} \cot 2 \varphi$$

$$\Rightarrow \cot 2 \varphi = \frac{aqq - a_{pp}}{2 a_{pq}} = \phi.$$

Agora:

$$\cot 2 \varphi = \frac{\cos 2 \varphi}{\sin 2 \varphi} = \frac{\cos^2 \varphi - \sin^2 \varphi}{2 \sin \varphi \cos \varphi} = \frac{\cos^2 \varphi - \sin^2 \varphi}{\cos^2 \varphi - \sin^2 \varphi} = \frac{1 - tg^2 \varphi}{2 tg \varphi}.$$

Seja $t = tg \varphi$; temos $cotg \ 2 \varphi = \phi$. Assim:

$$\phi = \frac{1 - t^2}{2t} \Rightarrow 1 - t^2 = 2t\phi .$$

Portanto:

$$t^2 + 2t\phi - 1 = 0 \implies t = \frac{-2 \phi \pm \sqrt{4\phi^2 + 4}}{2}$$
.

Obtemos então: $t = -\phi \pm \sqrt{\phi^2 + 1}$. Multiplicando o numerador e o denominador por: $\phi \pm \sqrt{\phi^2 + 1}$ segue que:

$$t = \frac{1}{\phi \pm \sqrt{\phi^2 + 1}}$$

Computacionalmente, adotamos:

$$t = \begin{cases} \frac{1}{\phi + Sinal(\phi)\sqrt{\phi^2 + 1}}, & \phi \neq 0; \\ 1, & \phi = 0. \end{cases}$$

Observe que escolhemos o sinal positivo ou negativo de ϕ de modo a obter o denominador de maior módulo, pois assim teremos sempre $|t| \leq 1$. Agora, temos as seguintes fórmulas para a secante de um ângulo φ :

$$sec^2 \varphi = 1 + tg^2 \varphi$$
, e, $sec^2 \varphi = \frac{1}{cos^2 \varphi}$.

Assim:

$$\frac{1}{\cos^2 \varphi} \ = \ 1 + tg^2 \ \varphi \ \Rightarrow \ \cos^2 \varphi \ = \ \frac{1}{1 + tg^2 \ \varphi} \ .$$

Logo, podemos escrever:

$$c = \cos \varphi = \frac{1}{\sqrt{1 + tg^2 \varphi}} = \frac{1}{\sqrt{1 + t^2}},$$

$$s = \sin \varphi = \cos \varphi \cdot t = \frac{t}{\sqrt{1 + t^2}}.$$

Resumindo, o método de Jacobi, consiste em:

- 1) Determinar o elemento de maior módulo de A fora da diagonal. Esse elemento será denotado por a_{pq} .
- 2) Calcular:

2.1)
$$\phi = \frac{a_{qq} - a_{pp}}{2a_{pq}}$$
.
2.2) $t = \begin{cases} \frac{1}{\phi + Sinal(\phi)\sqrt{\phi^2 + 1}}, & \phi \neq 0; \\ 1, & \phi = 0. \end{cases}$

2.3)
$$\cos \varphi = \frac{1}{\sqrt{1+t^2}}$$
.

2.4)
$$sen \varphi = \frac{t}{\sqrt{1+t^2}}$$
.

3) Usar as fórmulas de rotação de Jacobi, isto é: as fórmulas: (7.13), (7.14), (7.6) com $j \neq p, q$ e (7.5) com $i \neq p, q$.

O processo deve ser repetido até obtermos uma matriz diagonal.

Observe que em cada passo k, o item 3) acima pode ser substituído pelo produto $U_k^t A_k U_k$.

Cálculo dos Auto-Vetores

Ao mesmo tempo que calculamos os auto-valores de uma matriz A pelo método de Jacobi podemos obter seus auto-vetores. Vimos que a sequência de matrizes A_k é calculada por recorrência através de:

$$A_{k+1} = U_k^t A_k U_k \quad (k = 1, 2, \ldots).$$

Como $A_1 = A$, obtemos:

$$A_{k+1} = U_k^t U_{k-1}^t \dots U_2^t U_1^t A U_1 U_2 \dots U_{k-1} U_k = V^t A V,$$

onde
$$V = U_1 U_2 \dots U_{k-1} U_k$$
.

Com a hipótese que $A_k \simeq D$ obtemos que $D = V^t A V$, onde V é matriz ortogonal, pois a matriz V é produto de matrizes ortogonais. Assim D contém os auto-valores de A e V contém seus correspondentes auto-vetores (em colunas), isto é, a j-ésima coluna de V é o auto-vetor correspondente ao auto-valor λ_i .

Observe que em cada passo do método de Jacobi, um par de elementos fora da diagonal torna-se zero. Assim pode parecer, à primeira vista, que uma matriz diagonal é obtida após um número finito de passos. Entretanto, isso não é verdade porque transformações ortogonais subsequentes destroem os zeros criados

anteriormente. Apesar disso, é possível mostrar que quando um zero é criado nas posições (p,q) e (q,p), a soma dos quadrados dos elementos não diagonais da matriz A_k , $S(A_k)$, decresce de $2a_{pq}^2$. De fato, seja:

$$S(A_k) = \sum_{\substack{i,j=1\\i\neq j}} (a_{ij})^2.$$

Vamos mostrar que $S(A_k) \to 0$. Para tanto, em cada passo $A \to A''$ vamos comparar S(A) com S(A''). Assim:

$$\begin{split} S(A'') &= \sum_{\substack{i,j=1\\i,j\neq p,q}} (a''_{ij})^2 + \sum_{\substack{i=1\\i\neq p,q}} [(a''_{ip})^2\\ &+ (a''_{iq})^2] + \sum_{\substack{j=1\\j\neq p,q}} [(a''_{pj})^2 + (a''_{qj})^2] + 2(a''pq)^2 \;, \end{split}$$

onde as somas do lado direito da expressão acima representam, respectivamente: os elementos que não mudam, os elementos das linhas p e q, fora da diagonal; elementos das colunas p e q, fora da diagonal. Agora, usando (??), segue que:

$$(a_{ip}^{"})^2 + (a_{iq}^{"})^2 = (a_{ip}c - a_{iq}s)^2 + (a_{ip}s - a_{iq}c)^2 = (a_{ip})^2 + (a_{iq})^2$$
,

e desde que o mesmo é válido para $(a_{pj}^{\prime\prime})^2+(a_{qj}^{\prime\prime})^2,$ obtemos:

$$S(A'') = S(A) - 2(a_{pq})^2 + 2(a''_{pq})^2$$
.

Observe que na expressão acima devemos subtrair $2(a_{pq})^2$, pois S(A) contém este elemento. Assim, de um modo geral, no k-ésimo passo, teremos:

$$S_k = S_{k-1} - 2(a_{pq}^{k-1})^2 + 2(a_{pq}^k)^2$$
$$= S_{k-1} - 2(a_{pq}^{k-1})^2,$$

desde que (a_{pq}^{k-1}) é o maior elemento, em módulo, fora da diagonal principal e $a_{pq}^k = 0$. Substituindo todos os elementos, fora da diagonal principal, por a_{pq}^{k-1}), obtemos:

$$S_{k-1} \le (n^2 - n)(a_{pq}^{k-1})^2$$

$$\Rightarrow (a_{pq}^{k-1})^2 \leq \frac{S_{k-1}}{n^2 - n} .$$

Logo:

$$S_k \le S_{k-1} - 2\frac{S_{k-1}}{n^2 - n}$$

$$= S_{k-1} \left(1 - \frac{2}{n^2 - n} \right) .$$

A partir desta expressão para S_k , podemos escrever que:

$$S_k \le \left(1 - \frac{2}{n^2 - n}\right) S_{k-1} \le \left(1 - \frac{2}{n^2 - n}\right)^2 S_{k-2} \le \dots$$

e assim, concluímos que:

$$S_k \le \left(1 - \frac{2}{n^2 - n}\right)^k S_0 ,$$

onde S_0 , representa a soma dos quadrados dos elementos não diagonais da matriz dada. Agora desde que $\left(1-\frac{2}{n^2-n}\right)<1$, segue que $S_k\to 0$ quando $k\to \infty$, e isto signufica que $A\to D$, quando $k\to \infty$. Com isso, acabamos de mostrar que o método de Jacobi é convergente para qualquer matriz real simétrica.

Observe ainda que, na prática, não obtemos, em geral uma matriz diagonal, mas sim uma matriz quase diagonal, ou seja, desde que: $S_{k-1} \leq (n^2-n)(a_{pq}^{k-1})^2 \leq n^2(a_{pq}^{k-1})^2$, paramos o processo quando $n|a_{pq}^k| < \epsilon$, onde ϵ é uma precisão pré-fixada. A seguir daremos alguns exemplos.

Exemplo 7.9 - Determinar os auto-valores e correspondentes auto-vetores de:

$$A = \left(\begin{array}{cc} 7 & 2 \\ 2 & 7 \end{array}\right) ,$$

pelo método de Jacobi.

Solução: Como a matriz é 2×2 para diagonalizar A devemos zerar o elemento (1,2). Assim: (p,q) = (1,2). Temos então que:

$$\phi = \frac{a_{22} - a_{11}}{2a_{12}} = 0 \Rightarrow t = 1.$$

Portanto:

$$c = \frac{1}{\sqrt{1+1^2}} = \frac{\sqrt{2}}{2} = 0.7071 ,$$

$$s = 1 \cdot \frac{1}{\sqrt{2}} = t \times c = \frac{\sqrt{2}}{2} = 0.7071 ,$$

$$a''_{11} = a_{11}c^2 - 2a_{12}sc + a_{22}s^2$$

$$= 7(0.5) - 2(2)(0.7071)(0.7071) + 7(0.5) = 5 ,$$

$$a''_{22} = a_{11}s^2 + 2a_{12}sc + a_{22}c^2$$

$$= 7(0.5) + 2(2)(0.7071)(0.7071) + 7(0.5) = 9 ,$$

onde utilizamos as fórmulas: (7.7) e (7.8). Assim: $A_1 = \begin{pmatrix} 5 & 0 \\ 0 & 9 \end{pmatrix}$.

Logo os auto-valores de A são: $\lambda_1 = 5; \lambda_2 = 9$ e desde que:

$$V = U_1 = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} = \begin{pmatrix} 0.7071 & 0.7071 \\ -0.7071 & 0.7071 \end{pmatrix} ,$$

os auto-vetores, correspondentes, são:

$$v_1 = \begin{pmatrix} 0.7071 \\ -0.7071 \end{pmatrix} , v_2 = \begin{pmatrix} 0.7071 \\ 0.7071 \end{pmatrix}.$$

Exemplo 7.10 - Determinar, usando o método de Jacobi, os auto-valores da matriz:

$$A = \left(\begin{array}{ccc} 4 & 2 & 0 \\ 2 & 5 & 3 \\ 0 & 3 & 6 \end{array}\right) .$$

Solução: O maior elemento, em módulo, fora da diagonal principal da matriz $A_1 = A$, é o elemento $a_{23} = a_{32} = 3$. Assim:

$$\phi \ = \ \frac{a_{33} - a_{22}}{2a_{23}} \ = \ \frac{6 - 5}{6} \ = \ 0.1667 \ .$$

Portanto, t = 0.8471, $cos\varphi = c = 0.7630$, $sen\varphi = s = 0.6464$. Como já dissemos podemos ou aplicar as fórmulas: (7.13), (7.14), (7.6) com $j \neq 2, 3$ e (7.5) com $i \neq 2, 3$, ou simplesmente efetuar o produto $U_1^t A_1 U_1$, para obter A_2 , onde:

$$U_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.7630 & 0.6464 \\ 0 & -0.6464 & 0.7630 \end{pmatrix} \Rightarrow A_2 = \begin{pmatrix} 4 & 1.5260 & 1.2928 \\ 1.5260 & 2.4586 & 0 \\ 1.2928 & 0 & 8.5414 \end{pmatrix}.$$

O elemento de maior valor absoluto, na matriz A_2 é $a_{12}=a_{21}=1.5260$. Assim:

$$\phi = -0.5050, \quad t = -0.6153, \quad c = 0.8517, \quad s = -0.5240$$
.

Obtemos, então:

$$U_2 = \begin{pmatrix} 0.8517 & -0.5240 & 0 \\ 0.5240 & 0.8517 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow A_3 = \begin{pmatrix} 4.9387 & 0 & 1.1011 \\ 0 & 1.5197 & -0.6774 \\ 1.1011 & -0.6774 & 8.5414 \end{pmatrix}.$$

Agora $(p,q)=(1,3), \ \phi=1.6360, \ t=0.2814, \ c=0.9626, \ s=0.2709, \ e \ com isso obtemos:$

$$U_3 = \begin{pmatrix} 0.9626 & 0 & 0.2709 \\ 0 & 1 & 0 \\ -0.2709 & 0 & 0.9626 \end{pmatrix} \Rightarrow A_4 = \begin{pmatrix} 4.6611 & 0.1239 & 0 \\ 0.1239 & 1.5197 & -0.6520 \\ 0 & -0.6520 & 8.8536 \end{pmatrix}.$$

Temos (p,q)=(2,3) e assim afetuando os cálculos segue que: $\phi=-5.6266,\ t=-0.0882,\ c=0.9961,\ s=-0.0879.$ Portanto:

$$U_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.9961 & -0.0879 \\ 0 & -0.0879 & 0.9961 \end{pmatrix} \Rightarrow A_5 = \begin{pmatrix} 4.6228 & 0.1827 & -0.0161 \\ 0.1827 & 1.4621 & 0 \\ -0.0161 & 0 & 8.9081 \end{pmatrix}.$$

Observe que os elementos não diagonais da sequência $A_k \to 0$, à medida que k aumenta. Assim os elementos diagonais da sequência A_k convergem para os auto-valores de A que são: 1.45163, 4.63951, 8.90885. Uma precisão maior pode ser obtida continuando o processo. Além disso, se desejarmos uma aproximação para os auto-vetores, basta efetuar o produto $U_1U_2U_3U_4$.

7.5.2 Método Cíclico de Jacobi

A procura do elemento de maior módulo, fora da diagonal principal, a cada passo do método de Jacobi, é um processo caro que deve ser evitado. Uma alternativa é percorrer ciclicamente os elementos fora da diagonal principal, por linha, por exemplo. Assim, sucessivamente, zeramos os elementos das posições:

$$(1,2)$$
 $(1,3)$... $(1,n)$
 $(2,3)$... $(2,n)$
... $(n-1,n)$

escolhendo em cada passo φ tal que $a_{pq}^{"}=0$. As fórmulas usadas são as mesmas do método de Jacobi. A seguir voltamos à primeira linha, segunda linha, etc, isto é, repetimos o ciclo tantas vezes quantas

forem necessárias até obtermos uma matriz diagonal. Além disso, desde que os elementos não diagonais, a cada passo, decrescem podemos usar uma estratégia conhecida como **Método Cíclico de Jacobi com** Dados de Entrada. Tal método consiste em omitir transformações sobre elementos cujo valor, em módulo, é menor que os valores fornecidos como dados de entrada. A vantagem deste método é que zeros são criados apenas nas posições onde o valor é em módulo maior que os valores fornecidos nos dados de entrada, sem a necessidade de ir zerando todos os elementos. O próximo exemplo ilustra esse método.

Exemplo 7.11 - Determinar os auto-valores e correspondentes auto-vetores da matriz:

$$A = \left(\begin{array}{ccc} 3 & 0.4 & 5\\ 0.4 & 4 & 0.1\\ 5 & 0.1 & -2 \end{array}\right) ,$$

usando o método de Jacobi, tomando como dados de entrada para o primeiro e segundo ciclos: 0.5 e 0.05, respectivamente.

Solução: Para o primeiro ciclo a transformação sobre o elemento (1,2) será omitida pois |0.4| < 0.5. Portanto, desde que |5| > 0.5, um zero será criado na posição (1,3). Assim, fazendo os cálculos, obtemos:

$$U_1 = \begin{pmatrix} 0.8507 & 0 & -0.5257 \\ 0 & 1 & 0 \\ 0.5257 & 0 & 0.8507 \end{pmatrix} \Rightarrow A_2 = \begin{pmatrix} 6.0902 & 0.3928 & 0 \\ 0.3928 & 4 & -0.1252 \\ 0 & -0.1252 & -5.0902 \end{pmatrix}.$$

A transformação (2,3) será omitida porque |-0.1252| < 0.5. Isto completa o primeiro ciclo. Para o segundo ciclo um zero será criado na posição (1,2) porque |0.3928| > 0.05. Portanto:

$$U_2 \; = \; \left(\begin{array}{ccc} 0.9839 & -0.1788 & 0 \\ 0.1788 & 0.9839 & 0 \\ 0 & 0 & 1 \end{array} \right) \; \Rightarrow \; A_3 \; = \; \left(\begin{array}{ccc} 6.1616 & 0 & -0.0224 \\ 0 & 3.9286 & -0.1232 \\ -0.0224 & -0.1232 & -5.0902 \end{array} \right) \; .$$

A transformação (1,3) será omitida pois |-0.0224| < 0.05. Finalmente um zero será criado na posição (2,3). Assim:

$$U_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.9999 & 0.0137 \\ 0 & -0.0137 & 0.9999 \end{pmatrix} \Rightarrow A_4 = \begin{pmatrix} 6.1616 & 0.0003 & -0.0224 \\ 0.0003 & 3.9303 & 0 \\ -0.0024 & 0 & -5.0919 \end{pmatrix}.$$

e portanto podemos dizer que os auto-valores de A são aproximadamente iguais a 6.1616, 3.9303 e -5.0919. Agora, para obtermos os auto-vetores calculamos o produto $U_1U_2U_3$. Fazendo isso, segue que:

$$U_1 U_2 U_3 = \begin{pmatrix} 0.8370 & -0.1449 & -0.5277 \\ 0.1788 & 0.9838 & 0.0135 \\ 0.5172 & -0.1056 & 0.8439 \end{pmatrix}.$$

Portanto os auto-vetores aproximados de A, correspondentes aos auto-valores aproximados: 6.1616, 3.9303 e -5.0919, são:

$$\begin{pmatrix} 0.8370 \\ 0.1788 \\ 0.5172 \end{pmatrix}, \begin{pmatrix} -0.1449 \\ 0.9838 \\ -0.1056 \end{pmatrix}, \begin{pmatrix} -0.5277 \\ 0.0135 \\ 0.8439 \end{pmatrix}.$$

Os auto-valores de A são: 6.16161, 3.93029 e -5.09190.

Observe que os teoremas de Gerschgorin (Teorema 1.10) fornecem ainda um limitante para os erros cometidos nos auto-valores calculados pelo método de Jacobi. No exemplo 7.11, os círculos de Gerschgorin da matriz transformada A_4 são dados por:

$$a_1 = 6.1616$$
, $r_1 = 0.0227$,
 $a_2 = 3.9303$, $r_2 = 0.0003$,
 $a_3 = -5.0919$, $r_3 = 0.0224$.

Estes círculos são isolados e assim existe exatamente um auto-valor em cada círculo. Os auto-valores podem portanto serem estimados por:

$$6.1616 \pm 0.0227$$
, 3.9303 ± 0.0003 , -5.0919 ± 0.0224

De um modo geral, se os elementos não diagonais de uma matriz $n \times n$ simétrica têm módulo não excedendo ϵ então, desde que os círculos de Gerschgorin são isolados, os auto-valores diferem dos elementos da diagonal principal por no máximo $(n-1)\epsilon$.

Exercícios

7.9 - Determine os auto-valores e auto-vetores das seguintes matrizes:

$$A = \begin{pmatrix} 10 & -6 & -4 \\ -6 & 11 & 2 \\ -4 & 2 & 6 \end{pmatrix} , B = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 2 & 2 \\ -2 & 2 & 5 \end{pmatrix} ,$$

usando:

- a) o método de Jacobi,
- b) o método cíclico de Jacobi,
- c) o método cíclico de Jacobi, com dados de entrada iqual a 10⁻ⁱ para o i-ésimo ciclo.

7.10 - Se:

$$U = \begin{pmatrix} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \end{pmatrix} \; ; \quad A = \begin{pmatrix} 5 & 0 & 1 \\ 0 & -3 & 0.1 \\ 1 & 0.1 & 2 \end{pmatrix} \; ,$$

calcule U^tAU , e deduza que se $\phi = -\frac{3}{2}$ então os elementos (1,3) e (3,1) deste produto são iguais a zero. Escreva aproximações para os auto-valores e auto-vetores de A. Use o teorema de Gerschgorin para obter um limite superior do erro nos auto-valores estimados.

7.6 Método de Rutishauser (ou Método LR)

O método de Rutishauser ou Método LR permite, sob certas condições, determinar todos os auto-valores de uma matriz, sem determinar o polinômio característico.

Seja A uma matriz quadrada de ordem n. O método consiste em construir uma sequência de matrizes A_1, A_2, \ldots do seguinte modo: decompomos $A = A_1$ no produto L_1R_1 onde L_1 é triangular inferior com 1 na diagonal e R_1 é triangular superior. (Decomposição LU, Capítulo 4). Então, $A_1 = L_1R_1$. Agora,

multiplicamos as duas matrizes na ordem inversa e formamos a matriz $A_2 = R_1L_1$, e decompomos, a seguir, a matriz A_2 no produto de duas matrizes triangulares L_2 e R_2 e assim por diante. Então temos:

$$A_{1} = A = L_{1}R_{1}$$

$$A_{2} = R_{1}L_{1} = L_{2}R_{2}$$

$$A_{3} = R_{2}L_{2} = L_{3}R_{3}$$

$$\vdots$$

$$A_{k} = R_{k-1}L_{k-1} = L_{k}R_{k}$$

$$\vdots$$

Observações:

- 1) Pode-se provar que: Se os auto-valores de A são distintos a sequência $\{A_k\}$ converge para uma matriz triangular superior R.
- 2) As matrizes A e R são matrizes similares. De fato, temos: $A_1 = L_1 R_1 \ \Rightarrow \ L_1^{-1} A_1 = R_1$, então:

$$A_2 = R_1 L_1 = L_1^{-1} A L_1 ,$$

desde que $A_1=A$. Portanto A_2 é similar a A. De $A_2=L_2R_2 \ \Rightarrow \ L_2^{-1}A_2=R_2$, então:

$$A_3 = R_2 L_2 = L_2^{-1} A_2 L_2 = L_2^{-1} L_1^{-1} A L_1 L_2$$
,

e portanto A_3 é similar a A. De um modo geral, obtemos:

$$A_k = R_{k-1}L_{k-1} = \underbrace{L_{k-1}^{-1} \dots L_1^{-1}}_{L^{-1}} A \underbrace{L_1 \dots L_{k-1}}_{L}.$$

Portanto A_k é similar a A. Logo possuem o mesmo polinômio característico. Portanto possuem os mesmos auto-valores.

- 3) Os elementos diagonais da matriz A_k são os auto-valores procurados.
- 4) O processo termina quando o elemento de maior valor absoluto da matriz A_k , (abaixo da diagonal principal), for menor que ϵ , onde ϵ é uma precisão pré-fixada.

Exemplo 7.12 - Calcular os auto-valores de:

$$A = \left(\begin{array}{ccc} 2 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 1 \end{array}\right)$$

pelo método de Rutishauser com precisão de 10^{-2} .

Solução: Temos:

$$A_{1} = A = \begin{pmatrix} 1 \\ 0 & 1 \\ 0.5 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 \\ 0.5 \end{pmatrix} = L_{1}U_{1},$$

$$A_{2} = U_{1}L_{1} = \begin{pmatrix} 2.5 & 0 & 1 \\ 0 & 1 & 0 \\ 0.25 & 0 & 0.5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 & 1 \\ 0.1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2.5 & 0 & 1 \\ 1 & 0 \\ 0.4 \end{pmatrix} = L_{2}U_{2},$$

$$A_{3} = U_{2}L_{2} = \begin{pmatrix} 2.6 & 0 & 1 \\ 0 & 1 & 0 \\ 0.04 & 0 & 0.4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 & 1 \\ 0.0154 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2.6 & 0 & 1 \\ 1 & 0 \\ 0.3846 \end{pmatrix} = L_{3}U_{3},$$

$$A_{4} = U_{3}L_{3} = \begin{pmatrix} 2.6154 & 0 & 1 \\ 0 & 1 & 0 \\ 0.00592 & 0 & 0.3846 \end{pmatrix}.$$

Como os elementos abaixo da diagonal principal de A_4 são, em módulo menor que $10^{-2} \Rightarrow A_4 \simeq R$. Assim, os auto-valores de A são:

$$\begin{split} \lambda_1 &\simeq 2.6154 \ , \\ \lambda_2 &= 1 \ , \\ \lambda_3 &\simeq 0.3846 \ , \quad \text{com} \quad \epsilon < 10^{-2}. \end{split}$$

Observe que os auto-valores de A são: 2.618034, 1 e 0.381966.

O método de Rutishauser permite obter também os auto-vetores. Entretanto o cálculo dos auto-vetores, por este método, é um tanto trabalhoso e assim será omitido. O leitor interessado pode encontrar a descrição do método, por exemplo em [Fox, 19..].

Exercícios

7.11 - Usando o método LR, determine os auto-valores das matrizes:

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix} , B = \begin{pmatrix} 5 & 1 & 0 \\ -1 & 3 & 1 \\ -2 & 1 & 10 \end{pmatrix} ,$$

com precisão de 10^{-2} .

7.12 - Considere a matriz:

$$A = \left(\begin{array}{ccc} 5 & 0 & 1 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{array}\right) .$$

Usando o método LR, uma única vez, isto é, até determinar A_2 , é possível estimar os auto-valores de A?

7.7 Método de Francis (ou Método QR)

O método de Francis ou Método QR determina todos os auto-valores de uma matriz, sem determinar o polinômio característico.

Seja A uma matriz quadrada de ordem n. O método consiste em construir uma sequência de matrizes A_1, A_2, \ldots do seguinte modo: decompomos $A = A_1$ no produto Q_1R_1 onde Q_1 é ortogonal e R_1 é triangular superior. Então, $A_1 = Q_1R_1$. Agora, multiplicamos as duas matrizes na ordem inversa e formamos a matriz $A_2 = R_1Q_1$, e decompomos, a seguir, a matriz A_2 no produto Q_2R_2 e assim por diante. Então temos:

$$\begin{array}{rcl} A_1 & = & A = Q_1 R_1 \; , \\ A_2 & = & R_1 Q_1 = Q_2 R_2 \; , \\ \vdots & & \\ A_k & = & R_{k-1} Q_{k-1} = Q_k R_k \; \vdots \end{array}$$

Observações:

- a) Essa decomposição tem a vantagem, em relação ao método LR, de sempre existir. Além disso, se A_s é real então Q_s e R_s são reais.
- b) A sequência A_k converge para uma matriz triangular superior em cuja diagonal encontram-se os auto-valores da matriz A.
- c) A matriz A_k é similar a matriz A. De fato, temos: $A_1 = Q_1 R_1 \ \Rightarrow \ Q_1^{-1} A_1 = R_1$, então:

$$A_2 = R_1 Q_1 = Q_1^{-1} A Q_1$$

Portanto, desde que $A_1 = A$, temos que: A_2 e A são similares. De um modo geral, obtemos:

$$A_{k+1} = R_k Q_k = \underbrace{Q_k^{-1} Q_{k-1}^{-1} \dots Q_1^{-1}}_{Q^{-1}} A_1 \underbrace{Q_1 \dots Q_{k-1} Q_k}_{Q}$$

Portanto A_{k+1} é similar a A. Logo possuem o mesmo polinômio característico. Portanto possuem os mesmos auto-valores.

- d) Os elementos diagonais da matriz A_k são os auto-valores procurados.
- e) O processo termina quando o elemento de maior valor absoluto da matriz A_k , (abaixo da diagonal principal), for menor que ϵ , onde ϵ é uma precisão pré-fixada.

Em cada passo do método QR, devemos determinar matrizes Q_k e R_k onde Q_k é matriz ortogonal e R_k é matriz triangular superior. Essa decomposição pode ser obtida utilizando transformações ortogonais da forma (1.23). A seguir mostramos como isso pode ser feito.

Seja A uma matriz que desejamos decompor no produto QR. Para zerar o elemento a_{21} , fazemos o produto U_1A e com isso obtemos uma matriz $A^{(1)}$; para zerar o elemento a_{31} fazemos o produto $U_2A^{(1)}$ e assim obtemos uma matriz $A^{(2)}$, e assim successivamente, isto é, procedemos coluna por coluna até zerarmos todos os elementos abaixo da diagonal principal. O produto das matrizes $U_1^tU_2^t$... fornece a matriz Q_1 .

Considere então o produto U_1A , onde U_1 é dada por (1.23). O elemento a'_{qp} é dado por:

$$a'_{qp} = -sen \varphi a_{pp} + cos \varphi a_{qp} , \qquad (7.16)$$

e queremos $a'_{qp} = 0$. Assim, o que desejamos é

$$- a_{pp}\sqrt{1 - \cos^2\varphi} + \cos\varphi a_{qp} = 0$$

$$\Rightarrow a_{pp}\sqrt{1 - \cos^2\varphi} = a_{qp}\cos\varphi$$

$$\Rightarrow a_{pp}^2(1 - \cos^2\varphi) = a_{qp}^2\cos^2\varphi$$

$$\Rightarrow (a_{pp}^2 + a_{qp}^2)\cos^2\varphi = a_{pp}^2$$

$$\Rightarrow \cos\varphi = \frac{a_{pp}}{\sqrt{a_{pp}^2 + a_{qp}^2}}.$$

Por outro lado, igualando (7.18) a zero, segue que:

$$sen\varphi = \frac{a_{qp} \cos \varphi}{a_{pp}} \Rightarrow sen\varphi = \frac{a_{qp}}{\sqrt{a_{pp}^2 + a_{qp}^2}}$$
.

Para melhor entendimento do método, considere uma matriz de ordem 3. Para reduzí-la a forma triangular devemos zerar os elementos a_{21} , a_{31} e a_{32} . Assim, fazendo $c = cos\varphi$ e $s = sen\varphi$, segue que:

1) para zerar o elemento a_{21} , efetuamos o produto:

$$\underbrace{\begin{pmatrix} c & s & 0 \\ -s & c & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{II} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

e desde que queremos $a_{21} = 0$ devemos ter:

$$-s \ a_{11} + c \ a_{21} = 0$$
, onde

$$s \ = \ \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}} \quad e \quad c \ = \ \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}} \ .$$

2) para zerar o elemento a_{31} , efetuamos o produto:

$$\underbrace{\begin{pmatrix} c & 0 & s \\ 0 & 1 & 0 \\ -s & 0 & c \end{pmatrix}}_{U_2} \begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a''_{11} & a''_{12} & a''_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & a''_{32} & a''_{33} \end{pmatrix}$$

e desde que queremos $a_{31} = 0$, devemos ter:

$$-s a'_{11} + c a_{31} = 0$$
, onde

$$s = \frac{a_{31}}{\sqrt{a'_{11}^2 + a_{31}^2}}$$
 e $c = \frac{a'_{11}}{\sqrt{a'_{11}^2 + a_{31}^2}}$.

3) para zerar o elemento a_{32} , efetuamos o produto:

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c & s \\ 0 & -s & c \end{pmatrix}}_{U_3} \begin{pmatrix} a_{11}'' & a_{12}'' & a_{13}'' \\ 0 & a_{22}' & a_{23}' \\ 0 & a_{32}'' & a_{33}'' \end{pmatrix}}_{= \begin{pmatrix} a_{11}'' & a_{12}'' & a_{13}'' \\ 0 & a_{22}'' & a_{23}'' \\ 0 & 0 & a_{33}'' \end{pmatrix}$$

e desde que queremos $a_{32}'' = 0$, devemos ter:

$$-s a'_{22} + c a''_{32} = 0$$

$$\Rightarrow s = \frac{a_{32}''}{\sqrt{a_{22}'^2 + a_{32}''^2}} \quad e \quad c = \frac{a_{22}'}{\sqrt{a_{22}'^2 + a_{32}''^2}}.$$

Assim, obtemos:

$$U_3 U_2 U_1 A = R_1 \implies A = \underbrace{U_1^t U_2^t U_3^t}_{Q_1} R_1 .$$

O produto $R_1Q_1=R_1U_1^tU_2^tU_3^t$ é obtido por sucessivas pré-multiplicações de R com as matrizes $U_k^t,\ k=1,2,\ldots$

Exemplo 7.13 - Determinar os auto-valores da matriz:

$$A = \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

pelo método de Francis; com $\epsilon < 10^{-2}$.

Solução: Como $a_{21}=0$, devemos zerar apenas o elemento a_{31} . Assim $U_1=I$ e para obtermos U_2 , fazemos:

$$s = \frac{a_{31}}{\sqrt{a_{11}^2 + a_{31}^2}} \Rightarrow s = \frac{1}{\sqrt{2^2 + 1^2}} = \frac{1}{\sqrt{5}} = 0.4472 ,$$

$$c = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{31}^2}} \Rightarrow c = \frac{2}{\sqrt{5}} = 0.8944 .$$

Assim:

$$U_2 = \begin{pmatrix} 0.8944 & 0 & 0.4472 \\ 0 & 1 & 0 \\ -0.4472 & 0 & 0.8944 \end{pmatrix}.$$

Portanto:

$$U_2U_1A = U_2IA = U_2A = \underbrace{\begin{pmatrix} 2.2360 & 0 & 1.3416 \\ 0 & 1 & 0 \\ 0 & 0 & 0.4472 \end{pmatrix}}_{R_1}.$$

Desde que $a_{32}=0 \ \Rightarrow \ U_3=I.$ Assim: $U_3U_2U_1 = U_2$ e $U_2^{-1} = U_2^t.$ Portanto:

$$A_1 = A = \underbrace{\begin{pmatrix} 0.8944 & 0 & -0.4472 \\ 0 & 1 & 0 \\ 0.4472 & 0 & 0.8944 \end{pmatrix}}_{U_5^t} \begin{pmatrix} 2.2360 & 0 & 1.3416 \\ 0 & 1 & 0 \\ 0 & 0 & 0.4472 \end{pmatrix} = Q_1 R_1.$$

Agora:

$$A_2 = R_1 Q_1 = \begin{pmatrix} 2.5998 & 0 & 0.2000 \\ 0 & 1 & 0 \\ 0.2000 & 0 & 0.4000 \end{pmatrix} .$$

Aplicando novamente o processo, temos que: $U_1 = U_3 = I$. Devemos então determinar U_2 . Assim:

$$s = \frac{0.2000}{\sqrt{(2.5998)^2 + (0.2000)^2}} = 0.0767,$$

$$c = \frac{2.5998}{\sqrt{(2.5998)^2 + (0.2000)^2}} = 0.9971.$$

Portanto:

$$U_2 = \begin{pmatrix} 0.9971 & 0 & 0.0767 \\ 0 & 1 & 0 \\ -0.0767 & 0 & 0.9971 \end{pmatrix} ,$$

e assim:

$$U_2 A_2 = \begin{pmatrix} 2.6076 & 0 & 0.2301 \\ 0 & 1 & 0 \\ 0 & 0 & 0.3935 \end{pmatrix} = R_2$$

Logo:

$$A_{2} = \underbrace{\begin{pmatrix} 0.9971 & 0 & -0.0767 \\ 0 & 1 & 0 \\ 0.0767 & 0 & 0.9971 \end{pmatrix}}_{U_{2}^{t}} \begin{pmatrix} 2.6076 & 0 & 0.2301 \\ 0 & 1 & 0 \\ 0 & 0 & 0.3835 \end{pmatrix} = Q_{2} R_{2}$$

Finalmente,

$$A_3 = R_2 \ Q_2 = \left(\begin{array}{ccc} 2.6177 & 0 & 0.0294 \\ 0 & 1 & 0 \\ 0.0094 & 0 & 0.3824 \end{array} \right) \ .$$

Desde que o maior elemento, em valor absoluto, abaixo da diagonal principal é menor do que 10^{-2} , temos que os valores aproximados dos auto-valores de A são: 2.6177, 1 e 0.3824. Observe que os auto-valores de A são: 2.618034, 1 e 0.381966.

O método QR permite obter também os auto-vetores. Como no método LR o cálculo dos auto-vetores é trabalhoso por este método e assim será omitido. O leitor interessado pode encontrar a descrição do método, por exemplo em [Fox, 19..].

Exercícios

7.13 - Usando o método QR, determinar todos os auto-valores das matrizes:

$$A = \begin{pmatrix} 4 & 4 & -3 \\ 0 & 8 & 1 \\ 0 & 2 & -1 \end{pmatrix} , B = \begin{pmatrix} 12 & 3 & 1 \\ -9 & -2 & -3 \\ 14 & 6 & 2 \end{pmatrix} ,$$

 $com\ precisão\ de\ 10^{-2}$

7.14 - Usando o método QR, uma única vez, na matriz:

$$A = \left(\begin{array}{ccc} 1 & 1 & 3 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{array}\right) ,$$

é possível estimar seus auto-valores? (Use aritmética exata).

7.8 Exercícios Complementares

7.15 - Para cada uma das matrizes:

$$A = \begin{pmatrix} -2 & 5 \\ 1 & -3 \end{pmatrix} , \quad A = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 3 & 1 \\ 0 & 2 & -1 \end{pmatrix} ,$$

encontre um polinômio que tenha a matriz como raiz.

7.16 - Sabendo que uma matriz de ordem 3 tem como auto-valores $\lambda_1=-1,\ \lambda_2=2,\ \lambda_3=3.$

- a) Qual é o polinômio característico de A?
- **b)** Quanto vale $tr(A^2)$?
- c) Quais são os auto-valores de A^{-1} ?
- d) A matriz A é uma matriz singular? Por quê?

7.17 - Seja A uma matriz quadrada de ordem n e sejam $\lambda_1, \lambda_2, \dots, \lambda_n$ seus auto-valores. Quais são os auto-valores de A-qI onde q é uma constante e I é a matriz identidade?

7.18 - Mostre que se v é auto-vetor de A e de B então v é auto-vetor de $\alpha A + \beta B$, onde α, β são escalares quaisquer.

7.19 - Mostre que uma matriz A e sua transposta A^t possuem o mesmo polinômio característico.

7.20 - Considere a matriz:

$$A = \left(\begin{array}{rrr} 1 & 3 & -1 \\ 0 & 0 & 2 \\ -1 & 1 & 0 \end{array} \right) .$$

Verifique, através do método de Leverrier, que seu polinômio característico é dado por:

$$P(\lambda) = -\lambda^3 + \lambda^2 + 3\lambda - 8.$$

7.21 - Seja a matriz:

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{array}\right) .$$

a) Verifique pelo método de Leverrier-Faddeev que seu polinômio característico é dado por:

$$P(\lambda) = (-1)^3 (\lambda^3 - 6\lambda^2 + 6\lambda + 7)$$
.

- **b)** Determine por método numérico a sua escolha o único auto-valor real negativo de A com precisão de 10^{-2} .
 - c) Usando os resultados obtidos em a) e b) calcule o auto-vetor correspondente.
 - d) Usando a) obtenha a inversa de A.
- **7.22** Usando o método das potências determine, com precisão de 10^{-3} , o auto-valor de maior valor absoluto, e seu correspondente auto-vetor, para cada uma das seguintes matrizes:

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix} , \quad B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} .$$

7.23 - Considere a matriz:

$$A = \left(\begin{array}{rrr} 1 & -1 & 2 \\ -1 & 1 & 2 \\ 2 & -2 & 8 \end{array}\right) .$$

- a) Pelo método das potências calcule o auto-valor de maior valor absoluto de A e seu correspondente auto-vetor.
 - b) Obtenha o polinômio característico de A pelo método de Leverrier-Faddeev.
 - c Determine os demais auto-valores de A.
- d) Obtenha o auto-vetor correspondente ao auto-valor λ_2 pelo processo de Leverrier Faddeev. Suponha $|\lambda_1| > |\lambda_2| > |\lambda_3|$.
- 7.24 Determinar o auto-valor de maior valor absoluto da matriz:

$$A = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 5 & 1 \\ 2 & 1 & 6 \end{array}\right) .$$

usando o método das potências. Use como vetor inicial $y_0 = (8/9, 8/9, 1)^t$. Dê seu valor aproximado após três iterações.

7.25 - Considere as matrizes:

$$A = \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} .$$

Para cada uma delas:

- a) calcule $P(\lambda)$ e suas raízes algebricamente.
- **b)** calcule $P(\lambda)$ pelo método de Leverrier.
- c) calcule os auto-valores e auto-vetores pelo método de Leverrier-Faddeev.
- d) calcule os auto-valores pelo método de potências.
- e) calcule os auto-valores pelo método LR.
- f) calcule os auto-valores pelo método QR.

7.26 - Matrizes do tipo:

$$\left(\begin{array}{ccc} x_0 & x_1 & x_2 \\ x_2 & x_0 & x_1 \\ x_1 & x_2 & x_0 \end{array}\right) ,$$

são chamadas matrizes circulantes. Determine todos os auto-valores e correspondentes auto-vetores da matriz circulante onde $x_0 = 9, x_1 = 2$ e $x_3 = 1$, utilizando para isso método numérico a sua escolha.

7.27 - Localizar, usando o teorema de Gerschgorin, os auto-valores de:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{pmatrix} , \quad B = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & 0 \end{pmatrix} .$$

7.28 - Considere a matriz:

$$A = \left(\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right) .$$

Determine os auto-valores de A, usando:

- a) o método clássico de Jacobi,
- b) o método cíclico de Jacobi,
- c) o método cíclico de Jacobi, com dados de entrada igual a 5×10^{-i} para o i-ésimo ciclo.
- d) Use o teorema de Gerschgorin para obter um limite superior do erro nos auto-valores estimados.

7.29 - Considere a matrizes:

$$A = \begin{pmatrix} 10 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} , \quad B = \begin{pmatrix} 100 & 0 & 99 \\ 0 & 20 & 0 \\ 99 & 0 & 101 \end{pmatrix} .$$

- a) Caso haja convergência pelo método de Rutishauser, o que se deve esperar?
- b) Determine os auto-valores usando o método de Rutishauser. Use com processo de parada $\epsilon = 10^{-2}$, ou número máximo de iterações = 3.
- 7.30 Considere a matriz:

$$A = \left(\begin{array}{ccc} 4 & 1 & 1 \\ 2 & 4 & 1 \\ 0 & 1 & 4 \end{array}\right) .$$

Determine os auto-valores de A, com precisão de 10^{-2} , usando:

- a) o método LR,
- **b)** o método QR.

7.9 Problemas Aplicados e Projetos

7.1 - Considere o movimento horizontal do conjunto massa mola mostrado na Figura 7.3.

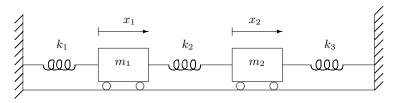


Figura 7.3

As deflexões horizontais x_1 e x_2 são medidas relativamente à posição de equilíbrio estático. As molas possuem rigidez k_1, k_2 e k_3 , que são as forças requeridas para estender ou comprimir cada mola de uma unidade de comprimento.

As equações de movimento são:

$$m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 + k_2 (x_2 - x_1)$$

$$m_2 \frac{d^2 x_2}{dt^2} = k_2 (x_1 - x_2) + k_3 x_2$$

a) Se $x = (x_1, x_2)^t$ é o vetor deflexão então podemos reescrever as equações acima na forma:

$$\frac{d^2x}{dt^2} = Ax$$

b) Mostre que a substituição:

$$x = ve^{iwt}$$

onde v é um vetor do R^2 , $e^{iwt} = coswt + isenwt$ com $i = \sqrt{-1}$, leva ao problema de auto-valores : $Av = \lambda v$ onde $\lambda = -w^2$. Os possíveis valores que w pode assumir são as frequências naturais de vibração do sistema.

- c) Se $k_1 = k_2 = k_3 = 1kg/s^2$ e $m_1 = m_2 = 1kg$ determine os auto-valores e auto-vetores de A, por método numérico 'a sua escolha.
- 7.2 Considere o seguinte sistema de equações diferenciais, com coeficientes constantes:

$$\begin{cases}
\frac{dy_1}{dx} = f_1(x, y_1, y_2, \dots, y_n) \\
\frac{dy_2}{dx} = f_2(x, y_1, y_2, \dots, y_n) \\
\frac{dy_3}{dx} = f_3(x, y_1, y_2, \dots, y_n) \\
\vdots \\
\frac{dy_n}{dx} = f_3(x, y_1, y_2, \dots, y_n)
\end{cases} (7.17)$$

Se escrevermos (7.17), na forma:

$$Y'(t) = AY(t) ,$$

então a solução geral do sistema é dado por:

$$Y(t) = \sum_{k=1}^{n} c_k e^{\lambda_k t} v_k ,$$

onde: c_k são constantes arbitrárias, λ_k são os auto-valores de A e v_k seus correspondentes auto-vetores.

Considere os sistemas:

$$(I) \begin{cases} \frac{dy_1}{dx} &= 10y_1 \\ \frac{dy_2}{dx} &= y_1 - 3y_2 - 7y_3 \\ \frac{dy_3}{dx} &= 2y_2 + 6y_3 \end{cases}, \quad (II) \begin{cases} \frac{dy_1}{dx} &= -10y_1 - 7y_2 + 7y_3 \\ \frac{dy_2}{dx} &= 5y_1 + 5y_2 - 4y_3 \\ \frac{dy_3}{dx} &= -7y_1 - 5y_2 + 6y_3 \end{cases},$$

Determine a solução geral destes sistemas, usando um método numérico à sua escolha para determinar todos os auto-valores e auto-vetores. Cuidado!! O sistema (II) possui auto-valores iguais em módulo.

7.3 - A curvatura de uma coluna delgada sujeita a uma carga P pode ser modelada por:

$$\frac{d^2y}{dx^2} = \frac{M}{EI} \,, \tag{7.18}$$

onde $\frac{d^2y}{dx^2}$ especifica a curvatura, M é o momento de curvatura, E é o módulo de elasticidade, e I é o momento de inércia da seção transversal sobre o eixo neutro. Considerando o corpo livre na Figura 7.4-b é claro que o momento de curvatura em x é M=-Py. Substituindo esse valor na equação (7.18) resulta:

$$\frac{d^2y}{dx^2} + p^2y = 0 (7.19)$$

onde

$$p^2 = \frac{P}{EI} \ . \tag{7.20}$$

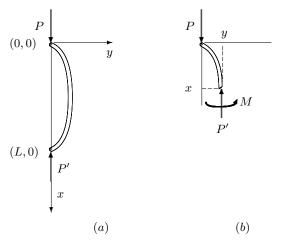


Figura 7.4

Para o sistema na Figura 7.4, sujeita às condições de contorno y(0) = y(L) = 0, a solução geral da equação (7.19) é:

$$y = A \operatorname{sen} px + B \operatorname{cos} px$$
,

onde A e B são constantes arbitrárias que devem ser obtidas usando-se as condições de contorno. Mostre que de y(0) = 0 obtêm-se B = 0 e de y(L) = 0 obtêm-se A sen pL = 0. Mas desde que A = 0 representa a solução trivial, concluímos que sen pL = 0. Assim, para que esta última igualdade seja válida devemos ter:

$$pL = n\pi , \quad n = 1, 2, \dots$$
 (7.21)

Portanto, existe um número infinito de valores que satisfazem as condições de contorno. A equação (7.21) pode ser resolvida para:

$$p = \frac{n\pi}{L}, \quad n = 1, 2, 3, \dots,$$
 (7.22)

os quais são os auto-valores para a coluna. Cada auto-valor corresponde ao modo nos quais a coluna curva-se. Combinando as equações (7.20) e (7.22), segue que:

$$P \ = \ \frac{n^2 \pi^2 EI}{L^2} \ , \quad n = 1, 2, 3, \ldots \ .$$

Isto pode ser entendido como uma deformação da carga porque elas representam os níveis nos quais as colunas movimentam-se em cada deformação sucessiva. Na prática, em geral, o auto-valor correspondente a n=1 é o de interesse porque a quebra usualmente ocorre quando a primeira coluna se deforma. Assim, a carga crítica pode ser definida como:

$$P_{crit.} = \frac{\pi^2 EI}{L^2} \ .$$

Uma carga sobre uma coluna de madeira possui as seguintes características: $E=10^10$ Pa, $I=1.25\times 10^{-5}m^4$, e L=3m. Determine o oito primeiros auto-valores, isto é, os auto-valores correspondente a $n=1,2\ldots,8$ e suas correspondentes deformações das cargas. Qual o valor obtido para a carga crítica?

7.4 - No problema 7.3 foi razoavelmente fácil obter os auto-valores pois era conhecida a expressão analítica da solução, o que em geral não acontece na prática. Assim, podemos obter os auto-valores de (7.19), substituindo a derivada segunda pela diferença dividida central, isto é, substituindo $\frac{d^2y}{dx^2}$ por:

$$\frac{y_{i+1} - 2y_i + y_{i-!}}{h^2} \ .$$

Fazendo isso, podemos escrever (7.20) como:

$$\frac{y_{i+1} - 2y_i + y_{i-!}}{h^2} + p^2 y_i = 0 ,$$

ou ainda:

$$y_{i+1} - (2 - h^2 p^2)y_i + y_{i-1} = 0$$
.

Escrevendo esta equação para uma série de nós ao longo do eixo da coluna, obtêm-se um sistema de equações homogêneas. Por exemplo, se a coluna é dividida em cinco segmentos (isto é, quatro nós interiores), o resultado é:

$$\begin{pmatrix} (2-h^2p^2) & -1 & & & \\ -1 & (2-h^2p^2) & -1 & & \\ & -1 & (2-h^2p^2) & -1 \\ & & -1 & (2-h^2p^2) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0.$$

Considerando os mesmos dados do problema 7.3 determine os auto-valores para os casos: a) um, b) dois, c) três e d) quatro nós interiores, usando método numérico à sua escolha. Lembre-se: desde que L=3, segue que para um nó interior $h=\frac{3}{2}$, para dois nós interiores $h=\frac{3}{3}$, etc.

7.5 - No probema 7.4, para três nós interiores você obteve o seguinte sistema:

$$\begin{pmatrix} (2 - 0.5625p^2) & -1 & & \\ -1 & (2 - 0.5625p^2) & -1 & \\ & -1 & (2 - 0.5625p^2) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = 0.$$

a) Mostre que dividindo cada equação por h², obtêm-se:

$$(A - \lambda I) = \begin{pmatrix} 3.556 - \lambda & -1.778 \\ -1.778 & 3.556 - \lambda & -1.778 \\ & -1.778 & 3.556 - \lambda \end{pmatrix}$$

onde $\lambda = p^2$, e que a expansão do determinante fornece:

$$P(\lambda) = -\lambda^3 + 10.667\lambda^2 - 31.607\lambda + 22.487$$
.

b) Mostre que o mesmo polinômio pode ser obtido aplicando-se o método de Leverrier-Faddeev à matriz:

$$B = \begin{pmatrix} 3.556 & -1.778 \\ -1.778 & 3.556 & -1.778 \\ -1.778 & 3.556 \end{pmatrix}$$

- c) Usando o polinômio característico obtido em b), determine os auto-valores de B, usando método numérico à sua escolha.
 - d) Usando o método de Jacobi, determine os auto-valores e auto-vetores da matriz B.